#!/usr/bin/env python3 import os os.environ.setdefault("TOKENIZERS_PARALLELISM", "false") import glob import socket import argparse import inspect from typing import Dict, List, Iterable, Iterator, Tuple, Optional import torch from torch.utils.data import IterableDataset, Dataset from datasets import load_dataset from transformers import ( AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, set_seed ) from transformers.trainer_callback import TrainerCallback # ----------------- 进程工具 ----------------- def is_main_process(): return int(os.environ.get("RANK", "0")) == 0 def print_once(*args, **kwargs): if is_main_process(): print(*args, **kwargs, flush=True) # ----------------- 日志回调 ----------------- class CsvLossLogger(TrainerCallback): def __init__(self, csv_path: str): self.csv_path = csv_path if is_main_process(): os.makedirs(os.path.dirname(csv_path), exist_ok=True) with open(self.csv_path, "w", encoding="utf-8") as f: f.write("step,loss,lr,total_flos\n") def on_log(self, args, state, control, logs=None, **kwargs): if not is_main_process() or logs is None: return with open(self.csv_path, "a", encoding="utf-8") as f: f.write(f"{state.global_step},{logs.get('loss','')},{logs.get('learning_rate','')},{logs.get('total_flos','')}\n") # ----------------- 仅监督 assistant 的数据集 ----------------- def _assistant_char_spans(rendered: str) -> List[Tuple[int, int]]: """ 在 apply_chat_template 渲染后的文本中,返回所有 assistant 内容的字符区间 [start, end)。 """ spans: List[Tuple[int, int]] = [] open_tag = "<|im_start|>assistant\n" close_tag = "<|im_end|>\n" pos = 0 while True: a = rendered.find(open_tag, pos) if a == -1: break start = a + len(open_tag) b = rendered.find(close_tag, start) if b == -1: break spans.append((start, b)) pos = b + len(close_tag) return spans class QwenChatSFTDataset(IterableDataset): """ 期望 jsonl 每行形如: {"messages":[{"role":"system","content":"..."},{"role":"user","content":"..."},{"role":"assistant","content":"..."}]} 可选包含工具: {"messages":[...], "tools":[{...}]} 工作流: - 使用 tokenizer.apply_chat_template 渲染 - 仅对 assistant 片段计损失(其他 token 的 label = -100) - 超长序列保留尾部(通常包含回答) """ def __init__(self, ex_iter: Iterable[dict], tokenizer: AutoTokenizer, seq_len: int = 4096): self.ex_iter = ex_iter self.tok = tokenizer self.seq_len = seq_len def __iter__(self) -> Iterator[Dict[str, torch.Tensor]]: for ex in self.ex_iter: msgs = ex.get("messages", None) if not msgs or not isinstance(msgs, list): # 严格要求 messages 格式;发现旧的 "text" 数据直接跳过 continue # 可选:过滤掉带有非空 的样本(避免训练真实 COT) bad = False for m in msgs: if m.get("role") == "assistant" and isinstance(m.get("content"), str): c = m["content"] if "" in c and "" in c: inner = c.split("")[-1].split("")[0].strip() if inner: bad = True; break if bad: continue tools = ex.get("tools", None) # 1) 按模型自带模板渲染(不要手写) rendered: str = self.tok.apply_chat_template( msgs, tools=tools, add_generation_prompt=False, # 训练包含 assistant 答案 tokenize=False ) if not isinstance(rendered, str) or not rendered.strip(): continue # 2) 找出 assistant 片段的字符区间 spans = _assistant_char_spans(rendered) if not spans: continue # 3) 分词 + 字符/Token 对齐 enc = self.tok( rendered, add_special_tokens=False, return_offsets_mapping=True ) input_ids: List[int] = enc["input_ids"] offsets: List[Tuple[int, int]] = enc["offset_mapping"] # 4) 仅 assistant 计损失 labels = [-100] * len(input_ids) def in_any_span(lo: int, hi: int) -> bool: for s, e in spans: if not (hi <= s or lo >= e): return True return False for i, (lo, hi) in enumerate(offsets): if in_any_span(lo, hi): labels[i] = input_ids[i] # 5) 超长裁剪(保留尾部) if len(input_ids) > self.seq_len: input_ids = input_ids[-self.seq_len:] labels = labels[-self.seq_len:] yield { "input_ids": torch.tensor(input_ids, dtype=torch.long), "attention_mask": torch.ones(len(input_ids), dtype=torch.long), "labels": torch.tensor(labels, dtype=torch.long) } # ----------------- 专用 Collator:pad inputs, pad labels=-100 ----------------- class SFTDataCollator: def __init__(self, tokenizer: AutoTokenizer, pad_to_length: Optional[int] = None): self.tok = tokenizer self.pad_to_length = pad_to_length assert self.tok.pad_token_id is not None def __call__(self, features): def _to_list(x): return x.tolist() if isinstance(x, torch.Tensor) else list(x) input_ids = [_to_list(f["input_ids"]) for f in features] attn_masks = [_to_list(f["attention_mask"]) for f in features] labels_list = [_to_list(f["labels"]) for f in features] max_len_in_batch = max(len(x) for x in input_ids) target_len = self.pad_to_length if self.pad_to_length is not None else max_len_in_batch pad_id = self.tok.pad_token_id batch_inp, batch_attn, batch_lab = [], [], [] for inp, msk, lab in zip(input_ids, attn_masks, labels_list): pad_len = target_len - len(inp) if pad_len < 0: inp, msk, lab = inp[:target_len], msk[:target_len], lab[:target_len] pad_len = 0 batch_inp.append(torch.tensor(inp + [pad_id]*pad_len, dtype=torch.long)) batch_attn.append(torch.tensor(msk + [0]*pad_len, dtype=torch.long)) batch_lab.append(torch.tensor(lab + [-100]*pad_len, dtype=torch.long)) return { "input_ids": torch.stack(batch_inp, dim=0), "attention_mask": torch.stack(batch_attn, dim=0), "labels": torch.stack(batch_lab, dim=0), } # ----------------- 参数 ----------------- def parse_args(): ap = argparse.ArgumentParser() ap.add_argument("--model_name_or_path", type=str, required=True, help="本地权重目录或 HF 名称(如 /home/test/Qwen3-8B)") ap.add_argument("--data_glob", type=str, required=True, help="本地 jsonl 通配符(每台机器都需有同路径数据;每行应含 messages/可选 tools)") ap.add_argument("--output_dir", type=str, required=True, help="本地输出目录(各节点各自本地写)") ap.add_argument("--seq_len", type=int, default=4096) ap.add_argument("--learning_rate", type=float, default=2e-5) ap.add_argument("--weight_decay", type=float, default=0.1) ap.add_argument("--warmup_ratio", type=float, default=0.02) ap.add_argument("--num_train_epochs", type=float, default=1.0) ap.add_argument("--max_steps", type=int, default=-1) ap.add_argument("--log_interval", type=int, default=10) ap.add_argument("--save_steps", type=int, default=500) ap.add_argument("--eval_ratio", type=float, default=0.0) # 兜底抽样评估 ap.add_argument("--seed", type=int, default=1337) ap.add_argument("--deepspeed", type=str, default="ds_config_zero3.json") ap.add_argument("--gradient_checkpointing", action="store_true") ap.add_argument("--bf16", action="store_true", help="3090/A100/H100 等可开 bf16;同时在 DS 配置里也要开") ap.add_argument("--per_device_train_batch_size", type=int, default=1) ap.add_argument("--gradient_accumulation_steps", type=int, default=64) ap.add_argument("--report_to", type=str, default="tensorboard", choices=["none","tensorboard","wandb"]) ap.add_argument("--wandb_project", type=str, default="ds-qwen3") ap.add_argument("--eval_data_glob", type=str, default=None, help="(可选) 测试/验证集 jsonl 通配符;如提供则优先使用") ap.add_argument("--local_rank", type=int, default=-1, help="for deepspeed/torchrun launcher; ignored by user code") return ap.parse_args() # ----------------- 主函数 ----------------- def main(): args = parse_args() set_seed(args.seed) # 1) 先补 tokenizer 的 pad tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=True, trust_remote_code=True) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token # 供 padding 使用 # 可选:让警告更少 tokenizer.model_max_length = args.seq_len # 2) 再加载模型 model = AutoModelForCausalLM.from_pretrained( args.model_name_or_path, torch_dtype=(torch.bfloat16 if args.bf16 else torch.float16), low_cpu_mem_usage=True, trust_remote_code=True ) # 3) 最后对齐模型的 pad_token_id model.config.pad_token_id = tokenizer.pad_token_id model.config.use_cache = False # 训练时禁用 cache if args.gradient_checkpointing: model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": False}) try: torch.backends.cuda.enable_flash_sdp(False) torch.backends.cuda.enable_mem_efficient_sdp(False) torch.backends.cuda.enable_math_sdp(True) # 走 math 实现 except Exception: pass # ===== 数据鲁棒性检查(多机各自执行)===== host = socket.gethostname() rank = int(os.environ.get("RANK", "0")) files = sorted(glob.glob(args.data_glob)) if len(files) == 0: raise FileNotFoundError( f"[host={host} rank={rank}] No files matched DATA_GLOB={args.data_glob}\n" "每台机器都必须在相同本地路径下放置数据;" "可通过 DATA_GLOB= ./run_ds.sh 覆写。" ) if is_main_process(): print(f"[data] matched {len(files)} files on host={host}, example[0]={files[0]}", flush=True) # streaming 逐行读取(messages/tools 结构) ds_stream = load_dataset( "json", data_files={"train": files}, split="train", streaming=True ) def ex_iter(): for ex in ds_stream: yield ex train_stream_probe = QwenChatSFTDataset(ex_iter(), tokenizer, seq_len=args.seq_len) # 探针:确保能产出至少一个样本 _probe_it = iter(train_stream_probe) try: _ = next(_probe_it) except StopIteration: raise RuntimeError( f"[host={host} rank={rank}] 数据文件匹配到了,但没有产生任何可训练样本。\n" "请确认每行 JSON 至少包含 'messages'(列表,含 user/assistant)字段;" "若含 请确保不包含真实思维文本,或移除。\n" "另外检查 seq_len 是否过小导致全部被裁。" ) # 探针已消耗流;为正式训练重建一次 ds_stream2 = load_dataset( "json", data_files={"train": files}, split="train", streaming=True ) # 多机/多卡分片(让每个全局 rank 读不同子流) world_size = int(os.environ.get("WORLD_SIZE", "1")) ds_stream2 = ds_stream2.shard(num_shards=world_size, index=rank, contiguous=True) def ex_iter2(): for ex in ds_stream2: yield ex train_stream = QwenChatSFTDataset(ex_iter2(), tokenizer, seq_len=args.seq_len) # ---- Eval 构造:优先使用 --eval_data_glob;否则才用 eval_ratio 抽样 ---- eval_dataset: Optional[Dataset] = None class ListDataset(Dataset): def __init__(self, items): self.items = items def __len__(self): return len(self.items) def __getitem__(self, idx): return self.items[idx] if args.eval_data_glob: eval_files = sorted(glob.glob(args.eval_data_glob)) if len(eval_files) == 0: raise FileNotFoundError(f"[host={host} rank={rank}] No eval files matched EVAL_DATA_GLOB={args.eval_data_glob}") if is_main_process(): print(f"[eval] matched {len(eval_files)} files, example[0]={eval_files[0]}", flush=True) ds_eval_stream = load_dataset("json", data_files={"eval": eval_files}, split="eval", streaming=True) def ex_iter_eval(): for ex in ds_eval_stream: yield ex eval_iterable = QwenChatSFTDataset(ex_iter_eval(), tokenizer, seq_len=args.seq_len) eval_items: List[Dict[str, torch.Tensor]] = [] for sample in eval_iterable: eval_items.append(sample) if len(eval_items) == 0: raise RuntimeError("[eval] eval_data_glob 读到了 0 条有效样本,请检查 messages 结构。") eval_dataset = ListDataset(eval_items) elif args.eval_ratio and args.eval_ratio > 0: # 简易头部抽样(流式下仅作粗评) desired_eval_batches = 200 tmp_stream = load_dataset("json", data_files={"train": files}, split="train", streaming=True) def ex_iter_eval2(): for ex in tmp_stream: yield ex eval_stream = QwenChatSFTDataset(ex_iter_eval2(), tokenizer, seq_len=args.seq_len) eval_samples = [] it = iter(eval_stream) for _ in range(desired_eval_batches): try: eval_samples.append(next(it)) except StopIteration: break if len(eval_samples) > 0: eval_dataset = ListDataset(eval_samples) data_collator = SFTDataCollator(tokenizer, pad_to_length=args.seq_len) os.makedirs(args.output_dir, exist_ok=True) logging_dir = os.path.join(args.output_dir, "logs") os.makedirs(logging_dir, exist_ok=True) # ---- 兼容 4.51(eval_strategy)与旧版(evaluation_strategy) ---- ta_kwargs = {} sig = inspect.signature(TrainingArguments.__init__).parameters if eval_dataset is not None: if "eval_strategy" in sig: ta_kwargs["eval_strategy"] = "steps" elif "evaluation_strategy" in sig: ta_kwargs["evaluation_strategy"] = "steps" else: if "eval_strategy" in sig: ta_kwargs["eval_strategy"] = "no" elif "evaluation_strategy" in sig: ta_kwargs["evaluation_strategy"] = "no" training_args = TrainingArguments( output_dir=args.output_dir, logging_dir=logging_dir, do_train=True, do_eval=(eval_dataset is not None), eval_steps=max(50, args.save_steps // 5) if eval_dataset is not None else None, per_device_train_batch_size=args.per_device_train_batch_size, gradient_accumulation_steps=args.gradient_accumulation_steps, learning_rate=args.learning_rate, weight_decay=args.weight_decay, warmup_ratio=args.warmup_ratio, num_train_epochs=args.num_train_epochs if args.max_steps < 0 else 1.0, max_steps=args.max_steps if args.max_steps > 0 else -1, lr_scheduler_type="cosine", logging_steps=args.log_interval, save_steps=args.save_steps, save_total_limit=2, deepspeed=args.deepspeed, dataloader_drop_last=True, dataloader_num_workers=0, dataloader_prefetch_factor=None, dataloader_pin_memory=False, report_to=([] if args.report_to == "none" else [args.report_to]), bf16=args.bf16, fp16=(not args.bf16), gradient_checkpointing=args.gradient_checkpointing, remove_unused_columns=False, torch_compile=False, save_on_each_node=False, logging_first_step=True, **ta_kwargs, ) trainer = Trainer( model=model, args=training_args, train_dataset=train_stream, eval_dataset=eval_dataset, processing_class=tokenizer, data_collator=data_collator ) trainer.add_callback(CsvLossLogger(csv_path=os.path.join(args.output_dir, "loss.csv"))) # 无共享盘:各节点本地 output_dir 下是否已有 checkpoint-* ckpt_exists = (os.path.isdir(args.output_dir) and any(n.startswith("checkpoint-") for n in os.listdir(args.output_dir))) resume_flag = True if ckpt_exists else None print_once(f"[host={socket.gethostname()}] Resume = {resume_flag is True}") print_once("***** Starting training *****") train_result = trainer.train(resume_from_checkpoint=resume_flag) trainer.save_model() # DeepSpeed stage3_gather_16bit_weights_on_model_save=true 时,在 rank0 聚合整模型 metrics = train_result.metrics trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() if eval_dataset is not None: print_once("***** Running eval *****") eval_metrics = trainer.evaluate() trainer.log_metrics("eval", eval_metrics) trainer.save_metrics("eval", eval_metrics) print_once("Done.") if __name__ == "__main__": main()