import os os.environ.pop("PYTHONNOUSERSITE", None) os.environ.setdefault("TOKENIZERS_PARALLELISM", "false") os.environ.setdefault("WANDB_START_METHOD", "thread") os.environ.setdefault("WANDB_DIR", f"/tmp/{os.environ.get('USER','user')}/wandb") os.environ.setdefault("WANDB_BASE_URL", "https://wandb.szaiai.com") os.environ.setdefault("WANDB_INIT_TIMEOUT", "300") import glob import socket import argparse import inspect import sys from typing import Dict, List, Iterable, Iterator, Tuple, Optional import torch import torch.distributed as dist from torch.utils.data import IterableDataset, Dataset from datasets import load_dataset from transformers import ( AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, set_seed ) from transformers.trainer_callback import TrainerCallback from transformers.trainer_utils import get_last_checkpoint from torch.optim import AdamW as TorchAdamW # ==== make sure CLI ninja/nvcc are reachable even in non-interactive ssh ==== import site, shutil home = os.path.expanduser("~") want = [f"{home}/.local/bin", "/usr/local/cuda-11.8/bin"] cur = os.environ.get("PATH", "").split(":") new = [d for d in want if d and d not in cur] + cur os.environ["PATH"] = ":".join(new) # 可见性打印,方便你在日志里确认 tn06 是否拿到了 print(f"[env] PATH={os.environ['PATH']}", flush=True) print(f"[env] which ninja={shutil.which('ninja')} which nvcc={shutil.which('nvcc')}", flush=True) os.environ.setdefault("CUDA_HOME", "/usr/local/cuda-11.8") ld = os.environ.get("LD_LIBRARY_PATH", "") cuda_lib = "/usr/local/cuda-11.8/lib64" if cuda_lib not in ld.split(":"): os.environ["LD_LIBRARY_PATH"] = f"{cuda_lib}:{ld}" if ld else cuda_lib # 可视化确认 print(f"[env] torch.version.cuda={torch.version.cuda} CUDA_HOME={os.environ['CUDA_HOME']}", flush=True) # 1) 确保不会屏蔽用户站点包(ninja 安在 ~/.local 里) os.environ.pop("DS_BUILD_OPS", None) os.environ.pop("DS_SKIP_CUDA_BUILD", None) # 2) 把用户站点目录插入 sys.path(比如 /home/test/.local/lib/python3.10/site-packages) try: user_site = site.getusersitepackages() if user_site and user_site not in sys.path: sys.path.insert(0, user_site) except Exception: pass # 3) 统一 JIT 缓存目录(可选,但更稳;日志里你现在用的是 ~/.cache/torch_extensions) os.environ.setdefault("TORCH_EXTENSIONS_DIR", f"/tmp/{os.environ.get('USER','user')}/torch_ext") os.environ.setdefault("MAX_JOBS", "12") if shutil.which("ninja") is None: os.environ["USE_NINJA"] = "0" print("[env] no CLI ninja on PATH -> USE_NINJA=0 fallback", flush=True) # 4) 立即验证 ninja 与 CPUAdam 的 JIT(若这里失败,日志会第一时间告诉你是哪台/哪 rank 环境不对) try: from deepspeed.ops.op_builder import CPUAdamBuilder CPUAdamBuilder().load() print("[env] CPUAdamBuilder JIT OK", flush=True) except Exception as e: # ninja 可执行找不到时走兜底:禁用 ninja,用 setuptools 构建(首次会慢一点,但必过) if "Ninja is required to load C++ extensions" in str(e): os.environ["USE_NINJA"] = "0" print("[env] no CLI ninja, retry with USE_NINJA=0 (fallback build)", flush=True) from deepspeed.ops.op_builder import CPUAdamBuilder CPUAdamBuilder().load() print("[env] CPUAdamBuilder JIT OK (fallback)", flush=True) else: import socket print(f"[env][host={socket.gethostname()} RANK={os.environ.get('RANK','?')}] PRE-JIT FAILED: {e}", flush=True) raise # ----------------- 进程工具 ----------------- def is_main_process(): return int(os.environ.get("RANK", "0")) == 0 def print_once(*args, **kwargs): if is_main_process(): print(*args, **kwargs, flush=True) class DebugTrainer(Trainer): def training_step(self, model, inputs, num_items_in_batch=None): if not hasattr(self, "_dbg_printed"): rank = int(os.environ.get("RANK", "0")) host = socket.gethostname() ids = inputs["input_ids"] msk = inputs["attention_mask"] labs = inputs["labels"] print(f"[step0] ids={ids.device} mask={msk.device} labs={labs.device} " f"supervised={(labs!=-100).sum().item()}", flush=True) print( f"[step0][host={host} RANK={rank}] " f"input_ids.shape={tuple(ids.shape)} " f"attention_mask.shape={tuple(msk.shape)} " f"labels.shape={tuple(labs.shape)} " f"num_items_in_batch={num_items_in_batch}", flush=True ) self._dbg_printed = True try: return super().training_step(model, inputs, num_items_in_batch=num_items_in_batch) except TypeError: return super().training_step(model, inputs) # return super().training_step(model, inputs, num_items_in_batch) # ----------------- 日志回调 ----------------- class CsvLossLogger(TrainerCallback): def __init__(self, csv_path: str): self.csv_path = csv_path if is_main_process(): os.makedirs(os.path.dirname(csv_path), exist_ok=True) with open(self.csv_path, "w", encoding="utf-8") as f: f.write("step,loss,lr,total_flos\n") def on_train_begin(self, args, state, control, **kwargs): tmp = (getattr(state, "max_steps", 0) or getattr(args, "max_steps", 0) or 0) tot = tmp if isinstance(tmp, int) and tmp > 0 else 0 rank = os.environ.get("RANK", "?") host = socket.gethostname() print(f"[{host} rank={rank}] total_steps={tot}", flush=True) def on_log(self, args, state, control, logs=None, **kwargs): if logs is None: return # ---- 控制台打印:所有 rank 都打当前步/总步 ---- cur = int(getattr(state, "global_step", 0) or 0) tmp = (getattr(state, "max_steps", 0) or getattr(args, "max_steps", 0) or 0) tot = tmp if isinstance(tmp, int) and tmp > 0 else 0 pct = (f"{(cur / tot * 100):.1f}%" if tot else "n/a") # —— tot 一旦可用,就再宣布一次总步数(只打印一次) if tot and not hasattr(self, "_tot_announced"): print(f"[{socket.gethostname()} rank={os.environ.get('RANK','?')}] total_steps={tot}", flush=True) self._tot_announced = True rank = os.environ.get("RANK", "?") host = socket.gethostname() print( f"[{host} rank={rank}] step {cur}/{tot} ({pct}) " f"loss={logs.get('loss')} lr={logs.get('learning_rate')}", flush=True ) # ---- 只在主进程写 CSV,避免并发写 ---- if not is_main_process(): return with open(self.csv_path, "a", encoding="utf-8") as f: f.write( f"{cur},{logs.get('loss','')},{logs.get('learning_rate','')},{logs.get('total_flos','')}\n" ) from typing import List, Tuple, Iterable, Iterator, Dict # ----------------- 仅监督 assistant 内容(token-id 级,不用 offsets) ----------------- class QwenChatSFTDataset(IterableDataset): """ - 通过 chat_template 得到 token ids - 以 special token id 定位 assistant 片段(<|im_start|>assistant\n ... <|im_end|>) - 只监督 assistant 内容本体;默认把 (含标签)整体屏蔽 - 超长时保最后一个 assistant 片段完整,左侧补齐到 seq_len """ def __init__(self, ex_iter: Iterable[dict], tokenizer: AutoTokenizer, seq_len: int = 4096, mask_think_and_tags: bool = True): self.ex_iter = ex_iter self.tok = tokenizer self.seq_len = seq_len self.mask_think_and_tags = mask_think_and_tags # 关键标记的 token 序列 self.id_START = self.tok.convert_tokens_to_ids("<|im_start|>") self.id_END = self.tok.convert_tokens_to_ids("<|im_end|>") # self.ids_ASSISTANT_NL = self.tok.encode("assistant\n", add_special_tokens=False) # 支持两种常见写法:'assistant\\n' 或 'assistant' self.ids_ASSISTANT_CANDIDATES = [ self.tok.encode("assistant\n", add_special_tokens=False), self.tok.encode("assistant", add_special_tokens=False), ] # 过滤空候选(极端 tokenizer 配置) self.ids_ASSISTANT_CANDIDATES = [c for c in self.ids_ASSISTANT_CANDIDATES if len(c) > 0] if not self.ids_ASSISTANT_CANDIDATES: raise RuntimeError("[fatal] no valid 'assistant' role token sequence found; check chat template/tokenizer.") self.ids_THINK_OPEN = self.tok.encode("", add_special_tokens=False) self.ids_THINK_CLOSE = self.tok.encode("", add_special_tokens=False) # 兜底:有些模型未注册这些特殊 id 时,直接 fail-fast for name, val in { "id_START": self.id_START, "id_END": self.id_END }.items(): if val is None or val == self.tok.unk_token_id: raise RuntimeError(f"[fatal] tokenizer missing special token id for {name}") @staticmethod def _find_subseq(hay: list, needle: list, start: int) -> int: n = len(needle) if n == 0: return start for i in range(start, len(hay) - n + 1): if hay[i:i+n] == needle: return i return -1 def _find_role_after_start(self, ids, j_start: int) -> Optional[Tuple[int, int]]: """ 从 j_start 开始,尝试匹配任一 'assistant' 角色 token 序列。 返回 (pos, length);匹配失败返回 None。 """ for cand in self.ids_ASSISTANT_CANDIDATES: pos = self._find_subseq(ids, cand, j_start) if pos == j_start: return (pos, len(cand)) return None def __iter__(self) -> Iterator[Dict[str, torch.Tensor]]: # 调试开关 dbg_on = os.environ.get("DBG_SAMPLES", "0") == "1" dbg_limit = int(os.environ.get("DBG_SAMPLE_LIMIT", "3")) seen = 0 host = socket.gethostname() rank = int(os.environ.get("RANK", "0")) lrank = int(os.environ.get("LOCAL_RANK", "-1")) for ex in self.ex_iter: msgs = ex.get("messages") if not msgs or not isinstance(msgs, list): continue tools = ex.get("tools", None) # 直接让模板 tokenization -> ids(避免 offset 落坑) try: ids = self.tok.apply_chat_template( msgs, tools=tools, add_generation_prompt=False, tokenize=True, return_tensors=None ) # 兼容老版本返回 dict 的情况 if isinstance(ids, dict): ids = ids["input_ids"] except TypeError: # 极端回退:先渲染字符串再手动分词 rendered: str = self.tok.apply_chat_template( msgs, add_generation_prompt=False, tokenize=False ) ids = self.tok(rendered, add_special_tokens=False)["input_ids"] if not ids: continue # 构建监督掩码(0/1) mask = [0] * len(ids) i = 0 while i < len(ids): # 找到一个 <|im_start|> try: a = ids.index(self.id_START, i) except ValueError: break # 必须是 assistant 角色(兼容 'assistant\\n' 或 'assistant') j = a + 1 role_match = self._find_role_after_start(ids, j) if role_match is None: i = a + 1 continue _, role_len = role_match content_lo = j + role_len # 跳过角色 token 序列 # 找匹配的 <|im_end|> try: b = ids.index(self.id_END, content_lo) except ValueError: # 不闭合就放弃这个片段 i = a + 1 continue content_hi = b # 不含 END # 先把整个内容区间标 1(监督) for t in range(content_lo, content_hi): mask[t] = 1 # 可选:把 (含标签)整体屏蔽 if self.mask_think_and_tags: p = content_lo while True: o = self._find_subseq(ids, self.ids_THINK_OPEN, p) if o == -1 or o >= content_hi: break c = self._find_subseq(ids, self.ids_THINK_CLOSE, o + len(self.ids_THINK_OPEN)) if c == -1 or c > content_hi: break x_lo = o # 含 x_hi = c + len(self.ids_THINK_CLOSE) # 含 for t in range(x_lo, min(x_hi, content_hi)): mask[t] = 0 p = x_hi # 继续找下一个片段 i = b + 1 # 如果没有任何可监督 token,跳过 if not any(mask): continue # ======== 截断策略:优先保留“最后一个被监督 token”为终点 ======== if len(ids) > self.seq_len: last_on = max(idx for idx, v in enumerate(mask) if v == 1) end = min(len(ids), last_on + 1) start = max(0, end - self.seq_len) ids = ids[start:end] mask = mask[start:end] # ======== 左侧 pad ======== pad_id = self.tok.pad_token_id if self.tok.pad_token_id is not None else self.tok.eos_token_id L = len(ids) if L < self.seq_len: pad = self.seq_len - L input_ids = [pad_id] * pad + ids attention_mask = [0] * pad + [1] * L labels = [-100] * pad + [tok if m == 1 else -100 for tok, m in zip(ids, mask)] else: input_ids = ids attention_mask = [1] * self.seq_len labels = [tok if m == 1 else -100 for tok, m in zip(ids, mask)] # >>> 调试打印(可选) if dbg_on and seen < dbg_limit: sup_tok = sum(1 for v in labels if v != -100) print( f"[sample][host={host} RANK={rank} LRank={lrank}] " f"toks={len(input_ids)} sup_toks={sup_tok} " f"seq_len={self.seq_len} pad_id={pad_id}", flush=True ) seen += 1 yield { "input_ids": torch.tensor(input_ids, dtype=torch.long), "attention_mask": torch.tensor(attention_mask, dtype=torch.long), "labels": torch.tensor(labels, dtype=torch.long), } # ----------------- Collator(保持与上游一致:pad->label=-100, attn=0) ----------------- class SFTDataCollator: def __init__(self, tokenizer: AutoTokenizer, pad_to_length: Optional[int] = None): self.tok = tokenizer self.pad_to_length = pad_to_length assert self.tok.pad_token_id is not None, "tokenizer.pad_token_id must be set" def __call__(self, features): if not features: raise RuntimeError("Empty batch passed to collator") def _to_list(x): return x.tolist() if isinstance(x, torch.Tensor) else list(x) input_ids = [_to_list(f["input_ids"]) for f in features] attn_masks = [_to_list(f["attention_mask"]) for f in features] labels_list = [_to_list(f["labels"]) for f in features] max_len_in_batch = max(len(x) for x in input_ids) target_len = self.pad_to_length if self.pad_to_length is not None else max_len_in_batch pad_id = self.tok.pad_token_id batch_inp, batch_attn, batch_lab = [], [], [] for inp, msk, lab in zip(input_ids, attn_masks, labels_list): pad_len = target_len - len(inp) if pad_len < 0: inp, msk, lab = inp[:target_len], msk[:target_len], lab[:target_len] pad_len = 0 batch_inp.append(torch.tensor(inp + [pad_id]*pad_len, dtype=torch.long)) batch_attn.append(torch.tensor(msk + [0]*pad_len, dtype=torch.long)) batch_lab.append(torch.tensor(lab + [-100]*pad_len, dtype=torch.long)) return { "input_ids": torch.stack(batch_inp, dim=0), "attention_mask": torch.stack(batch_attn, dim=0), "labels": torch.stack(batch_lab, dim=0), } # ----------------- 参数 ----------------- def parse_args(): ap = argparse.ArgumentParser() ap.add_argument("--model_name_or_path", type=str, required=True, help="本地权重目录或 HF 名称(如 /home/test/Qwen3-8B)") ap.add_argument("--data_glob", type=str, required=True, help="本地 jsonl 通配符(每台机器都需有同路径数据;每行应含 messages/可选 tools)") ap.add_argument("--output_dir", type=str, required=True, help="本地输出目录(各节点各自本地写)") ap.add_argument("--seq_len", type=int, default=4096) ap.add_argument("--learning_rate", type=float, default=2e-5) ap.add_argument("--weight_decay", type=float, default=0.1) ap.add_argument("--warmup_ratio", type=float, default=0.02) ap.add_argument("--num_train_epochs", type=float, default=1.0) ap.add_argument("--max_steps", type=int, default=-1) ap.add_argument("--log_interval", type=int, default=10) ap.add_argument("--save_steps", type=int, default=500) ap.add_argument("--eval_ratio", type=float, default=0.0) ap.add_argument("--seed", type=int, default=1337) ap.add_argument("--gradient_checkpointing", action="store_true") ap.add_argument("--bf16", action="store_true", help="3090/A100/H100 等可开 bf16;同时在 DS 配置里也要开") ap.add_argument("--per_device_train_batch_size", type=int, default=1) ap.add_argument("--gradient_accumulation_steps", type=int, default=64) ap.add_argument("--report_to", type=str, default="tensorboard", choices=["none","tensorboard","wandb"]) ap.add_argument("--wandb_project", type=str, default="ds-qwen3") ap.add_argument("--eval_data_glob", type=str, default=None, help="(可选) 测试/验证集 jsonl 通配符;如提供则优先使用") ap.add_argument("--local_rank", type=int, default=-1, help="for deepspeed/torchrun launcher; ignored by user code") ap.add_argument("--per_device_eval_batch_size", type=int, default=1) ap.add_argument("--deepspeed", type=str, default=None) ap.add_argument("--eval_steps", type=int, default=10, help="Evaluate every N optimizer steps when eval_dataset is provided") return ap.parse_args() # ----------------- 主函数 ----------------- def main(): args = parse_args() # ✅ 只有 rank0 用 wandb,其它 rank 不上报 if os.environ.get("RANK", "0") != "0" and args.report_to == "wandb": print(f"[rank {os.environ.get('RANK')}] force report_to=none", flush=True) args.report_to = "none" set_seed(args.seed) host = socket.gethostname() # ==== colored dbg (robust default to info) ==== try: import colorama colorama.just_fix_windows_console() except Exception: pass def _use_color() -> bool: if os.environ.get("NO_COLOR"): return False if os.environ.get("FORCE_COLOR"): return True return sys.stdout.isatty() class _C: reset = "\033[0m" gray = "\033[90m" green = "\033[32m" yellow = "\033[33m" red = "\033[31m" cyan = "\033[36m" def _paint(s, color): return f"{color}{s}{_C.reset}" if _use_color() else s _LEVEL_ALIAS = { "": "info", None: "info", "ok": "ok", "success": "ok", "pass": "ok", "warn": "warn", "warning": "warn", "err": "err", "error": "err", "fatal": "err", "fail": "err", "info": "info", "information": "info" } _LEVEL_COLOR = { "ok": _C.green, "warn": _C.yellow, "err": _C.red, "info": _C.cyan, } def _norm_level(level) -> str: # 默认 info if level is None: return "info" # 数字等级兼容(类似 logging) if isinstance(level, (int, float)): if level >= 40: return "err" if level >= 30: return "warn" return "info" # 字符串别名 if isinstance(level, str): key = level.strip().lower() return _LEVEL_ALIAS.get(key, "info") return "info" def dbg(msg, level=None): lvl = _norm_level(level) # 未指定/非法 -> "info" host = socket.gethostname() rank = os.environ.get("RANK", "0") lrank = os.environ.get("LOCAL_RANK", "-1") prefix = f"[dbg][host={host} RANK={rank} LOCAL_RANK={lrank}] " color = _LEVEL_COLOR.get(lvl, _C.cyan) print(_paint(prefix, _C.gray) + _paint(str(msg), color), flush=True) # 便捷别名(可选) def dbg_ok(m): dbg(m, "ok") def dbg_warn(m): dbg(m, "warn") def dbg_err(m): s = _paint(f"[dbg]{m}", _C.red) print(s, flush=True, file=sys.stderr) # def dbg(msg): # print( # f"[dbg][host={host} RANK={os.environ.get('RANK','0')} " # f"LOCAL_RANK={os.environ.get('LOCAL_RANK', str(args.local_rank))}] {msg}", # flush=True # ) # 是否真的启用 DeepSpeed(传了配置文件且文件存在) use_ds = bool(args.deepspeed and os.path.isfile(args.deepspeed)) dschf = None if use_ds: try: from transformers.integrations.deepspeed import HfDeepSpeedConfig src = "transformers.integrations.deepspeed" except Exception: try: # 备用:部分版本直接从 transformers 暴露 from transformers import HfDeepSpeedConfig src = "transformers" except Exception as e: raise RuntimeError( "当前 transformers 版本未提供 HfDeepSpeedConfig,请升级/降级 transformers") from e dschf = HfDeepSpeedConfig(args.deepspeed) dbg(f"HfDeepSpeedConfig loaded from {src}") if args.report_to == "wandb": os.environ.setdefault("WANDB_PROJECT", args.wandb_project) # 仅在 rank0 预初始化 W&B is_rank0 = os.environ.get("RANK", "0") == "0" and os.environ.get("LOCAL_RANK", "-1") in ("0", "-1") if is_rank0: import wandb try: # 避免外部遗留的 RUN_ID 强制续跑导致卡住 os.environ.pop("WANDB_RUN_ID", None) # 可选字段从环境注入(有就用) extra = {} if os.getenv("WANDB_NAME"): extra["name"] = os.getenv("WANDB_NAME") if os.getenv("WANDB_GROUP"): extra["group"] = os.getenv("WANDB_GROUP") if os.getenv("WANDB_RESUME"): extra["resume"] = os.getenv("WANDB_RESUME") # 建议 'allow' run = wandb.init( project=args.wandb_project, entity=os.getenv("WANDB_ENTITY") or os.getenv("WB_ENTITY") or "hailin", settings=wandb.Settings( base_url=os.getenv("WANDB_BASE_URL", "https://wandb.szaiai.com"), init_timeout=int(os.getenv("WANDB_INIT_TIMEOUT", "300")), ), **extra, ) print(f"[wandb] run url: {getattr(run, 'url', '(n/a)')}", flush=True) except Exception as e: print(f"[wandb] init failed -> disable logging, reason={e}", flush=True) os.environ["WANDB_DISABLED"] = "true" args.report_to = "none" else: os.environ["WANDB_DISABLED"] = "true" # 版本 & 启动参数 & 关键环境变量 import transformers as hf try: import deepspeed as ds ds_ver = ds.__version__ except Exception: ds_ver = "n/a" dbg(f"torch={torch.__version__}, transformers={hf.__version__}, deepspeed={ds_ver}") dbg(f"args={args}") dbg("ENV: WORLD_SIZE=%s RANK=%s LOCAL_RANK=%s MASTER_ADDR=%s MASTER_PORT=%s CUDA_VISIBLE_DEVICES=%s" % ( os.environ.get("WORLD_SIZE"), os.environ.get("RANK"), os.environ.get("LOCAL_RANK", str(args.local_rank)), os.environ.get("MASTER_ADDR"), os.environ.get("MASTER_PORT"), os.environ.get("CUDA_VISIBLE_DEVICES"), )) dbg(f"cuda_available={torch.cuda.is_available()} device_count={torch.cuda.device_count()}") # ---- 初始化分布式(供一致性探针使用)---- world_size = int(os.environ.get("WORLD_SIZE", "1")) rank = int(os.environ.get("RANK", "0")) local_rank = int(os.environ.get("LOCAL_RANK", str(args.local_rank))) dbg(f"pre-init: world_size={world_size}, rank={rank}, local_rank={local_rank}") if torch.cuda.is_available() and local_rank >= 0: torch.cuda.set_device(local_rank) dbg(f"set_device({local_rank}); current_device={torch.cuda.current_device()} " f"name={torch.cuda.get_device_name(torch.cuda.current_device())}") else: dbg("no cuda or invalid local_rank; not calling set_device") if world_size > 1 and dist.is_available() and not dist.is_initialized(): backend = "nccl" if torch.cuda.is_available() else "gloo" dbg(f"init_process_group backend={backend} via env://") dist.init_process_group(backend=backend, init_method="env://") else: dbg(f"skip init_process_group: world_size>1? {world_size>1}, dist_available={dist.is_available()}, already_init={dist.is_initialized()}") if dist.is_available() and dist.is_initialized(): try: dbg(f"dist.get_backend()={dist.get_backend()} " f"dist.get_world_size()={dist.get_world_size()} dist.get_rank()={dist.get_rank()}") except Exception as e: dbg(f"dist query error: {e}") # 1) 先补 tokenizer 的 pad tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=True, trust_remote_code=True) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token # 左侧补齐以匹配 Dataset 的左 pad 策略 try: if getattr(tokenizer, "padding_side", None) != "left": tokenizer.padding_side = "left" except Exception: pass # 强制要求 fast tokenizer(offset_mapping 依赖 fast) # from transformers import PreTrainedTokenizerFast # if not isinstance(tokenizer, PreTrainedTokenizerFast) or not getattr(tokenizer, "is_fast", False): # raise RuntimeError("需要 *Fast* tokenizer 以获取 offset_mapping;请安装 tokenizers>=0.14 并使用对应 Fast 版分词器。") # 建议使用 fast 分词器(更快);不再依赖 offset_mapping if not getattr(tokenizer, "is_fast", False): print("[warn] using a slow tokenizer; masks are token-id based and still correct, just slower.", flush=True) tokenizer.model_max_length = args.seq_len dbg(f"tokenizer.pad_token_id={tokenizer.pad_token_id} " f"pad_token={repr(tokenizer.pad_token)} model_max_length={tokenizer.model_max_length}") # 2) 再加载模型 之前,先算 dtype def _bf16_supported(): if not torch.cuda.is_available(): return False # 兼容不同 torch 版本:优先用 API,退化到算力判断 if hasattr(torch.cuda, "is_bf16_supported"): return torch.cuda.is_bf16_supported() major, minor = torch.cuda.get_device_capability() return (major, minor) >= (8, 0) # Ampere 及以上 use_bf16 = bool(args.bf16 and _bf16_supported()) dtype = (torch.bfloat16 if use_bf16 else (torch.float16 if torch.cuda.is_available() else torch.float32)) try: torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True torch.set_float32_matmul_precision("high") except Exception: pass # 交给插件做 ZeRO-Init/分片加载 model = AutoModelForCausalLM.from_pretrained( args.model_name_or_path, torch_dtype=dtype, low_cpu_mem_usage=True, trust_remote_code=True, attn_implementation="sdpa", ) print(f"GC enabled? {getattr(model, 'is_gradient_checkpointing', False)}", flush=True) # dbg(f"model loaded: dtype={next(model.parameters()).dtype} " # f"use_cache={getattr(model.config,'use_cache',None)} " # f"pad_token_id={getattr(model.config,'pad_token_id',None)}") # 3) pad/alibi 等配置 model.config.pad_token_id = tokenizer.pad_token_id if getattr(model, "generation_config", None) is not None: model.generation_config.pad_token_id = tokenizer.pad_token_id model.config.use_cache = False if args.gradient_checkpointing: model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": False}) try: # 让 PyTorch 自己选,或显式打开高效实现(任选其一): torch.backends.cuda.enable_flash_sdp(True) torch.backends.cuda.enable_mem_efficient_sdp(True) torch.backends.cuda.enable_math_sdp(False) except Exception: pass # ✅ 放在这里打印“修正后”的值 dbg(f"post-config: use_cache={model.config.use_cache} " f"model.pad_token_id={model.config.pad_token_id} " f"gen.pad_token_id={getattr(getattr(model,'generation_config',None),'pad_token_id',None)} " f"tok.pad={tokenizer.pad_token}/{tokenizer.pad_token_id}") assert tokenizer.pad_token_id is not None, "tokenizer.pad_token_id must not be None" assert model.config.pad_token_id == tokenizer.pad_token_id, \ f"model.pad_token_id {model.config.pad_token_id} != tokenizer.pad_token_id {tokenizer.pad_token_id}" # ===== 数据鲁棒性检查(多机各自执行)===== files = sorted(glob.glob(args.data_glob)) if len(files) == 0: raise FileNotFoundError( f"[host={host} rank={rank}] No files matched DATA_GLOB={args.data_glob}\n" "每台机器都必须在相同本地路径下放置数据;" "可通过 DATA_GLOB= ./run_ds.sh 覆写。" ) if is_main_process(): print(f"[data] matched {len(files)} files on host={host}, example[0]={files[0]}", flush=True) # ====== 小探针:样本结构 ====== ds_stream_probe = load_dataset("json", data_files={"train": files}, split="train", streaming=True) def ex_iter_probe(): for ex in ds_stream_probe: yield ex train_stream_probe = QwenChatSFTDataset(ex_iter_probe(), tokenizer, seq_len=args.seq_len) try: sample = next(iter(train_stream_probe)) except StopIteration: raise RuntimeError( f"[host={host} rank={rank}] 数据文件匹配到了,但没有产生任何可训练样本。\n" "请确认每行 JSON 至少包含 'messages'(列表,含 user/assistant)字段;" "若含 请确保不包含真实思维文本,或移除。\n" "另外检查 seq_len 是否过小导致全部被裁。" ) # 更靠谱的自检(替换你现在的两行 assert) ids, attn, labs = sample["input_ids"], sample["attention_mask"], sample["labels"] assert (labs != -100).any(), "[fatal] no supervised tokens in first valid sample" # pad 区必须被忽略监督 assert bool((labs[attn == 0] == -100).all()), "[fatal] padded tokens must have label -100" # ====== 正式训练流(不做任何手动分片,交给 Accelerate/Trainer)====== ds_stream2 = load_dataset("json", data_files={"train": files}, split="train", streaming=True).shuffle(buffer_size=50000, seed=args.seed) train_stream = QwenChatSFTDataset((ex for ex in ds_stream2), tokenizer, seq_len=args.seq_len) # ====== 一致性探针(不分片)====== ds_stream_probe2 = load_dataset("json", data_files={"train": files}, split="train", streaming=True) probe_stream = QwenChatSFTDataset((ex for ex in ds_stream_probe2), tokenizer, seq_len=args.seq_len) def has_at_least(stream, n: int): it = iter(stream) for _ in range(n): try: next(it) except StopIteration: return 0 return 1 need = max(1, args.gradient_accumulation_steps) local_ok = has_at_least(probe_stream, need) if dist.is_available() and dist.is_initialized(): t = torch.tensor(local_ok, device=(f"cuda:{local_rank}" if torch.cuda.is_available() and local_rank >= 0 else "cpu")) dist.all_reduce(t, op=dist.ReduceOp.MIN) if t.item() == 0: if is_main_process(): print( f"[FATAL] 至少有一个 rank 在一个优化 step 内供不上 {need} 个微批 (GA={need})。 " f"请减少 GA 或扩大/清洗数据;本次训练不会启动。", flush=True ) dist.barrier() sys.exit(2) else: if local_ok == 0: print( f"[FATAL] 本机在一个优化 step 内供不上 {need} 个微批 (GA={need})。 " f"请减少 GA 或扩大/清洗数据;本次训练不会启动。", flush=True ) sys.exit(2) # ---- Eval 构造:优先使用 --eval_data_glob;否则才用 eval_ratio 抽样 ---- eval_dataset: Optional[Dataset] = None class ListDataset(Dataset): def __init__(self, items): self.items = items def __len__(self): return len(self.items) def __getitem__(self, idx): return self.items[idx] if args.eval_data_glob: eval_files = sorted(glob.glob(args.eval_data_glob)) if len(eval_files) == 0: raise FileNotFoundError(f"[host={host} rank={rank}] No eval files matched EVAL_DATA_GLOB={args.eval_data_glob}") if is_main_process(): print(f"[eval] matched {len(eval_files)} files, example[0]={eval_files[0]}", flush=True) ds_eval_stream = load_dataset("json", data_files={"eval": eval_files}, split="eval", streaming=True) def ex_iter_eval(): for ex in ds_eval_stream: yield ex eval_iterable = QwenChatSFTDataset(ex_iter_eval(), tokenizer, seq_len=args.seq_len) eval_items: List[Dict[str, torch.Tensor]] = [] for sample in eval_iterable: eval_items.append(sample) if len(eval_items) == 0: raise RuntimeError("[eval] eval_data_glob 读到了 0 条有效样本,请检查 messages 结构。") eval_dataset = ListDataset(eval_items) elif args.eval_ratio and args.eval_ratio > 0: desired_eval_batches = 200 tmp_stream = load_dataset("json", data_files={"train": files}, split="train", streaming=True) def ex_iter_eval2(): for ex in tmp_stream: yield ex eval_stream = QwenChatSFTDataset(ex_iter_eval2(), tokenizer, seq_len=args.seq_len) eval_samples = [] it = iter(eval_stream) for _ in range(desired_eval_batches): try: eval_samples.append(next(it)) except StopIteration: break if len(eval_samples) > 0: eval_dataset = ListDataset(eval_samples) # ---- 统一补齐 eval 集(确保不会出现空 batch)---- if eval_dataset is not None: ws = max(world_size, 1) be = max(1, args.per_device_eval_batch_size) global_bs = ws * be r = len(eval_dataset) % global_bs if r != 0: pad_need = global_bs - r eval_dataset.items += eval_dataset.items[:pad_need] if is_main_process(): print(f"[eval] padded eval set to {len(eval_dataset)} " f"(world_size={ws}, per_device_eval_batch_size={be}, global_bs={global_bs})", flush=True) # 补齐后再做 sanity check assert len(eval_dataset) % global_bs == 0, \ f"eval size {len(eval_dataset)} still not divisible by global_bs {global_bs}" # 更稳:联调阶段不强行 pad 到 4096 data_collator = SFTDataCollator(tokenizer, pad_to_length=None) os.makedirs(args.output_dir, exist_ok=True) logging_dir = os.path.join(args.output_dir, "logs") os.makedirs(logging_dir, exist_ok=True) # ---- 兼容 4.51(eval_strategy)与旧版(evaluation_strategy) ---- ta_kwargs = {} sig = inspect.signature(TrainingArguments.__init__).parameters if eval_dataset is not None: if "eval_strategy" in sig: ta_kwargs["eval_strategy"] = "steps" elif "evaluation_strategy" in sig: ta_kwargs["evaluation_strategy"] = "steps" else: if "eval_strategy" in sig: ta_kwargs["eval_strategy"] = "no" elif "evaluation_strategy" in sig: ta_kwargs["evaluation_strategy"] = "no" ta_sig = inspect.signature(TrainingArguments.__init__).parameters ta_kwargs2 = dict( output_dir=args.output_dir, logging_dir=logging_dir, run_name=f"sft-{os.path.basename(args.output_dir)}-{socket.gethostname()}", do_train=True, do_eval=(eval_dataset is not None), # eval_steps=max(50, args.save_steps // 5) if eval_dataset is not None else None, # 用用户指定的 eval_steps;没有 eval 集就 None eval_steps=(args.eval_steps if eval_dataset is not None else None), per_device_train_batch_size=args.per_device_train_batch_size, gradient_accumulation_steps=args.gradient_accumulation_steps, learning_rate=args.learning_rate, weight_decay=args.weight_decay, warmup_ratio=args.warmup_ratio, num_train_epochs=args.num_train_epochs if args.max_steps < 0 else 1.0, max_steps=args.max_steps if args.max_steps > 0 else -1, lr_scheduler_type="cosine", logging_steps=args.log_interval, save_steps=args.save_steps, save_total_limit=2, deepspeed=(args.deepspeed if use_ds else None), dataloader_drop_last=False, dataloader_num_workers=0, label_smoothing_factor=0.0, per_device_eval_batch_size=args.per_device_eval_batch_size, report_to=([] if args.report_to == "none" else [args.report_to]), #bf16=args.bf16, #fp16=(not args.bf16), gradient_checkpointing=args.gradient_checkpointing, remove_unused_columns=False, save_on_each_node=True, logging_first_step=True, **ta_kwargs, # 你之前构造的 eval_strategy 兼容项 ) if "dataloader_pin_memory" in ta_sig: ta_kwargs2["dataloader_pin_memory"] = False if "torch_compile" in ta_sig: ta_kwargs2["torch_compile"] = False # 构造 TrainingArguments 之前,沿用上面的 use_bf16 判定 ta_kwargs2.update({ "bf16": use_bf16, "fp16": (torch.cuda.is_available() and not use_bf16), }) training_args = TrainingArguments(**ta_kwargs2) trainer_kwargs = {} if "processing_class" in inspect.signature(Trainer.__init__).parameters: trainer_kwargs["processing_class"] = tokenizer else: trainer_kwargs["tokenizer"] = tokenizer trainer = DebugTrainer( model=model, args=training_args, train_dataset=train_stream, eval_dataset=eval_dataset, data_collator=data_collator, **trainer_kwargs, ) trainer.add_callback(CsvLossLogger(csv_path=os.path.join(args.output_dir, "loss.csv"))) # ==== 断点恢复判定(非共享盘安全写法)==== def last_step(path: str) -> int: ck = get_last_checkpoint(path) if ck is None: return -1 base = os.path.basename(ck) try: return int(base.split("-")[-1]) except Exception: return -1 local_last = last_step(args.output_dir) # -1 表示本机没有任何 checkpoint device = torch.device(f"cuda:{local_rank}" if (torch.cuda.is_available() and local_rank >= 0) else "cpu") resume_flag = None if dist.is_available() and dist.is_initialized(): # 只要有任意一个 rank 没有 ckpt -> 不恢复 has_local = torch.tensor(1 if local_last >= 0 else 0, device=device) dist.all_reduce(has_local, op=dist.ReduceOp.MIN) if has_local.item() == 1: # 全员都有:收集每个 rank 的 last step,取公共最小步 k(每台机器都一定存在) ts = torch.tensor(local_last, device=device) world = dist.get_world_size() buf = [torch.zeros_like(ts) for _ in range(world)] dist.all_gather(buf, ts) steps = [b.item() for b in buf] k = min(steps) if k >= 0: resume_flag = os.path.join(args.output_dir, f"checkpoint-{k}") if is_main_process(): print(f"[resume] steps={steps}, resume={resume_flag}", flush=True) else: # 单机或未初始化分布式:本地有就按本机最后一步恢复 if local_last >= 0: resume_flag = os.path.join(args.output_dir, f"checkpoint-{local_last}") print_once(f"[host={socket.gethostname()}] Resume = {resume_flag is not None}") # —— 全局一致性检测:如果有任意 rank 缺这个 ckpt,就禁用恢复 —— if dist.is_available() and dist.is_initialized(): device = torch.device(f"cuda:{local_rank}" if (torch.cuda.is_available() and local_rank >= 0) else "cpu") present = torch.tensor(1 if (resume_flag is not None and os.path.isdir(resume_flag)) else 0, device=device) dist.all_reduce(present, op=dist.ReduceOp.MIN) if present.item() == 0: if is_main_process(): print(f"[resume] {resume_flag} missing on some ranks -> disable resume.", flush=True) resume_flag = None dist.barrier() else: if resume_flag is not None and not os.path.isdir(resume_flag): # 单机:缺就直接禁用恢复 print(f"[resume] {resume_flag} not found locally -> disable resume.", flush=True) resume_flag = None print_once(f"[resume] final = {resume_flag if resume_flag else 'None (fresh start)'}") print_once("***** Starting training *****") dbg(f"allocated={torch.cuda.memory_allocated()/1024**2:.1f} MB, " f"reserved={torch.cuda.memory_reserved()/1024**2:.1f} MB") train_result = trainer.train(resume_from_checkpoint=resume_flag) trainer.save_model() # DeepSpeed stage3_gather_16bit_weights_on_model_save=true 时,在 rank0 聚合整模型 metrics = train_result.metrics trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() if eval_dataset is not None: print_once("***** Running eval *****") eval_metrics = trainer.evaluate() trainer.log_metrics("eval", eval_metrics) trainer.save_metrics("eval", eval_metrics) print_once("Done.") if __name__ == "__main__": main()