941 lines
40 KiB
Python
941 lines
40 KiB
Python
#!/usr/bin/env python3
|
||
import os
|
||
os.environ.pop("PYTHONNOUSERSITE", None)
|
||
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
|
||
os.environ.setdefault("WANDB_START_METHOD", "thread")
|
||
os.environ.setdefault("WANDB_DIR", f"/tmp/{os.environ.get('USER','user')}/wandb")
|
||
os.environ.setdefault("WANDB_BASE_URL", "https://wandb.szaiai.com")
|
||
os.environ.setdefault("WANDB_INIT_TIMEOUT", "300")
|
||
|
||
import glob
|
||
import socket
|
||
import argparse
|
||
import inspect
|
||
import sys
|
||
from typing import Dict, List, Iterable, Iterator, Tuple, Optional
|
||
|
||
import torch
|
||
import torch.distributed as dist
|
||
from torch.utils.data import IterableDataset, Dataset
|
||
|
||
from datasets import load_dataset
|
||
from transformers import (
|
||
AutoTokenizer,
|
||
AutoModelForCausalLM,
|
||
TrainingArguments,
|
||
Trainer,
|
||
set_seed
|
||
)
|
||
from transformers.trainer_callback import TrainerCallback
|
||
from transformers.trainer_utils import get_last_checkpoint
|
||
from torch.optim import AdamW as TorchAdamW
|
||
from transformers import EarlyStoppingCallback
|
||
|
||
# ==== make sure CLI ninja/nvcc are reachable even in non-interactive ssh ====
|
||
import site, shutil
|
||
|
||
home = os.path.expanduser("~")
|
||
want = [f"{home}/.local/bin", "/usr/local/cuda-11.8/bin"]
|
||
cur = os.environ.get("PATH", "").split(":")
|
||
new = [d for d in want if d and d not in cur] + cur
|
||
os.environ["PATH"] = ":".join(new)
|
||
|
||
print(f"[env] PATH={os.environ['PATH']}", flush=True)
|
||
print(f"[env] which ninja={shutil.which('ninja')} which nvcc={shutil.which('nvcc')}", flush=True)
|
||
|
||
os.environ.setdefault("CUDA_HOME", "/usr/local/cuda-11.8")
|
||
ld = os.environ.get("LD_LIBRARY_PATH", "")
|
||
cuda_lib = "/usr/local/cuda-11.8/lib64"
|
||
if cuda_lib not in ld.split(":"):
|
||
os.environ["LD_LIBRARY_PATH"] = f"{cuda_lib}:{ld}" if ld else cuda_lib
|
||
|
||
print(f"[env] torch.version.cuda={torch.version.cuda} CUDA_HOME={os.environ['CUDA_HOME']}", flush=True)
|
||
|
||
os.environ.pop("DS_BUILD_OPS", None)
|
||
os.environ.pop("DS_SKIP_CUDA_BUILD", None)
|
||
|
||
try:
|
||
user_site = site.getusersitepackages()
|
||
if user_site and user_site not in sys.path:
|
||
sys.path.insert(0, user_site)
|
||
except Exception:
|
||
pass
|
||
|
||
os.environ.setdefault("TORCH_EXTENSIONS_DIR", f"/tmp/{os.environ.get('USER','user')}/torch_ext")
|
||
os.environ.setdefault("MAX_JOBS", "12")
|
||
|
||
if shutil.which("ninja") is None:
|
||
os.environ["USE_NINJA"] = "0"
|
||
print("[env] no CLI ninja on PATH -> USE_NINJA=0 fallback", flush=True)
|
||
|
||
try:
|
||
from deepspeed.ops.op_builder import CPUAdamBuilder
|
||
CPUAdamBuilder().load()
|
||
print("[env] CPUAdamBuilder JIT OK", flush=True)
|
||
except Exception as e:
|
||
if "Ninja is required to load C++ extensions" in str(e):
|
||
os.environ["USE_NINJA"] = "0"
|
||
print("[env] no CLI ninja, retry with USE_NINJA=0 (fallback build)", flush=True)
|
||
from deepspeed.ops.op_builder import CPUAdamBuilder
|
||
CPUAdamBuilder().load()
|
||
print("[env] CPUAdamBuilder JIT OK (fallback)", flush=True)
|
||
else:
|
||
import socket
|
||
print(f"[env][host={socket.gethostname()} RANK={os.environ.get('RANK','?')}] PRE-JIT FAILED: {e}", flush=True)
|
||
raise
|
||
|
||
# ----------------- 进程工具 -----------------
|
||
def is_main_process():
|
||
return int(os.environ.get("RANK", "0")) == 0
|
||
|
||
def print_once(*args, **kwargs):
|
||
if is_main_process():
|
||
print(*args, **kwargs, flush=True)
|
||
|
||
class DebugTrainer(Trainer):
|
||
def training_step(self, model, inputs, num_items_in_batch=None):
|
||
if not hasattr(self, "_dbg_printed"):
|
||
rank = int(os.environ.get("RANK", "0"))
|
||
host = socket.gethostname()
|
||
ids = inputs["input_ids"]
|
||
msk = inputs["attention_mask"]
|
||
labs = inputs["labels"]
|
||
print(f"[step0] ids={ids.device} mask={msk.device} labs={labs.device} "
|
||
f"supervised={(labs!=-100).sum().item()}",
|
||
flush=True)
|
||
print(
|
||
f"[step0][host={host} RANK={rank}] "
|
||
f"input_ids.shape={tuple(ids.shape)} "
|
||
f"attention_mask.shape={tuple(msk.shape)} "
|
||
f"labels.shape={tuple(labs.shape)} "
|
||
f"num_items_in_batch={num_items_in_batch}",
|
||
flush=True
|
||
)
|
||
self._dbg_printed = True
|
||
try:
|
||
return super().training_step(model, inputs, num_items_in_batch=num_items_in_batch)
|
||
except TypeError:
|
||
return super().training_step(model, inputs)
|
||
|
||
# ----------------- 日志回调 -----------------
|
||
class CsvLossLogger(TrainerCallback):
|
||
def __init__(self, csv_path: str):
|
||
self.csv_path = csv_path
|
||
if is_main_process():
|
||
os.makedirs(os.path.dirname(csv_path), exist_ok=True)
|
||
with open(self.csv_path, "w", encoding="utf-8") as f:
|
||
f.write("step,loss,lr,total_flos\n")
|
||
|
||
def on_train_begin(self, args, state, control, **kwargs):
|
||
tmp = (getattr(state, "max_steps", 0) or getattr(args, "max_steps", 0) or 0)
|
||
tot = tmp if isinstance(tmp, int) and tmp > 0 else 0
|
||
rank = os.environ.get("RANK", "?")
|
||
host = socket.gethostname()
|
||
print(f"[{host} rank={rank}] total_steps={tot}", flush=True)
|
||
|
||
def on_log(self, args, state, control, logs=None, **kwargs):
|
||
if logs is None:
|
||
return
|
||
cur = int(getattr(state, "global_step", 0) or 0)
|
||
tmp = (getattr(state, "max_steps", 0) or getattr(args, "max_steps", 0) or 0)
|
||
tot = tmp if isinstance(tmp, int) and tmp > 0 else 0
|
||
pct = (f"{(cur / tot * 100):.1f}%" if tot else "n/a")
|
||
if tot and not hasattr(self, "_tot_announced"):
|
||
print(f"[{socket.gethostname()} rank={os.environ.get('RANK','?')}] total_steps={tot}", flush=True)
|
||
self._tot_announced = True
|
||
rank = os.environ.get("RANK", "?")
|
||
host = socket.gethostname()
|
||
print(
|
||
f"[{host} rank={rank}] step {cur}/{tot} ({pct}) "
|
||
f"loss={logs.get('loss')} lr={logs.get('learning_rate')}",
|
||
flush=True
|
||
)
|
||
if not is_main_process():
|
||
return
|
||
with open(self.csv_path, "a", encoding="utf-8") as f:
|
||
f.write(f"{cur},{logs.get('loss','')},{logs.get('learning_rate','')},{logs.get('total_flos','')}\n")
|
||
|
||
# ----------------- 仅监督 assistant 内容(token-id 级) -----------------
|
||
class QwenChatSFTDataset(IterableDataset):
|
||
def __init__(self, ex_iter: Iterable[dict], tokenizer: AutoTokenizer,
|
||
seq_len: int = 4096, mask_think_and_tags: bool = True):
|
||
self.ex_iter = ex_iter
|
||
self.tok = tokenizer
|
||
self.seq_len = seq_len
|
||
self.mask_think_and_tags = mask_think_and_tags
|
||
self.id_START = self.tok.convert_tokens_to_ids("<|im_start|>")
|
||
self.id_END = self.tok.convert_tokens_to_ids("<|im_end|>")
|
||
self.ids_ASSISTANT_CANDIDATES = [
|
||
self.tok.encode("assistant\n", add_special_tokens=False),
|
||
self.tok.encode("assistant", add_special_tokens=False),
|
||
]
|
||
self.ids_ASSISTANT_CANDIDATES = [c for c in self.ids_ASSISTANT_CANDIDATES if len(c) > 0]
|
||
if not self.ids_ASSISTANT_CANDIDATES:
|
||
raise RuntimeError("[fatal] no valid 'assistant' role token sequence found; check chat template/tokenizer.")
|
||
self.ids_THINK_OPEN = self.tok.encode("<think>", add_special_tokens=False)
|
||
self.ids_THINK_CLOSE = self.tok.encode("</think>", add_special_tokens=False)
|
||
for name, val in {"id_START": self.id_START, "id_END": self.id_END}.items():
|
||
if val is None or val == self.tok.unk_token_id:
|
||
raise RuntimeError(f"[fatal] tokenizer missing special token id for {name}")
|
||
|
||
@staticmethod
|
||
def _find_subseq(hay: list, needle: list, start: int) -> int:
|
||
n = len(needle)
|
||
if n == 0: return start
|
||
for i in range(start, len(hay) - n + 1):
|
||
if hay[i:i+n] == needle:
|
||
return i
|
||
return -1
|
||
|
||
def _find_role_after_start(self, ids, j_start: int) -> Optional[Tuple[int, int]]:
|
||
for cand in self.ids_ASSISTANT_CANDIDATES:
|
||
pos = self._find_subseq(ids, cand, j_start)
|
||
if pos == j_start:
|
||
return (pos, len(cand))
|
||
return None
|
||
|
||
def __iter__(self) -> Iterator[Dict[str, torch.Tensor]]:
|
||
dbg_on = os.environ.get("DBG_SAMPLES", "0") == "1"
|
||
dbg_limit = int(os.environ.get("DBG_SAMPLE_LIMIT", "3"))
|
||
seen = 0
|
||
host = socket.gethostname()
|
||
rank = int(os.environ.get("RANK", "0"))
|
||
lrank = int(os.environ.get("LOCAL_RANK", "-1"))
|
||
|
||
it = self.ex_iter() if callable(self.ex_iter) else iter(self.ex_iter)
|
||
for ex in it:
|
||
# for ex in self.ex_iter:
|
||
msgs = ex.get("messages")
|
||
if not msgs or not isinstance(msgs, list):
|
||
continue
|
||
tools = ex.get("tools", None)
|
||
try:
|
||
ids = self.tok.apply_chat_template(
|
||
msgs, tools=tools, add_generation_prompt=False,
|
||
tokenize=True, return_tensors=None
|
||
)
|
||
if isinstance(ids, dict):
|
||
ids = ids["input_ids"]
|
||
except TypeError:
|
||
rendered: str = self.tok.apply_chat_template(
|
||
msgs, add_generation_prompt=False, tokenize=False
|
||
)
|
||
ids = self.tok(rendered, add_special_tokens=False)["input_ids"]
|
||
|
||
if not ids:
|
||
continue
|
||
mask = [0] * len(ids)
|
||
i = 0
|
||
while i < len(ids):
|
||
try:
|
||
a = ids.index(self.id_START, i)
|
||
except ValueError:
|
||
break
|
||
j = a + 1
|
||
role_match = self._find_role_after_start(ids, j)
|
||
if role_match is None:
|
||
i = a + 1
|
||
continue
|
||
_, role_len = role_match
|
||
content_lo = j + role_len
|
||
try:
|
||
b = ids.index(self.id_END, content_lo)
|
||
except ValueError:
|
||
i = a + 1
|
||
continue
|
||
content_hi = b
|
||
for t in range(content_lo, content_hi):
|
||
mask[t] = 1
|
||
if self.mask_think_and_tags:
|
||
p = content_lo
|
||
while True:
|
||
o = self._find_subseq(ids, self.ids_THINK_OPEN, p)
|
||
if o == -1 or o >= content_hi:
|
||
break
|
||
c = self._find_subseq(ids, self.ids_THINK_CLOSE, o + len(self.ids_THINK_OPEN))
|
||
if c == -1 or c > content_hi:
|
||
break
|
||
x_lo = o
|
||
x_hi = c + len(self.ids_THINK_CLOSE)
|
||
for t in range(x_lo, min(x_hi, content_hi)):
|
||
mask[t] = 0
|
||
p = x_hi
|
||
i = b + 1
|
||
|
||
if not any(mask):
|
||
continue
|
||
|
||
if len(ids) > self.seq_len:
|
||
last_on = max(idx for idx, v in enumerate(mask) if v == 1)
|
||
end = min(len(ids), last_on + 1)
|
||
start = max(0, end - self.seq_len)
|
||
ids = ids[start:end]
|
||
mask = mask[start:end]
|
||
|
||
pad_id = self.tok.pad_token_id if self.tok.pad_token_id is not None else self.tok.eos_token_id
|
||
L = len(ids)
|
||
if L < self.seq_len:
|
||
pad = self.seq_len - L
|
||
input_ids = [pad_id] * pad + ids
|
||
attention_mask = [0] * pad + [1] * L
|
||
labels = [-100] * pad + [tok if m == 1 else -100 for tok, m in zip(ids, mask)]
|
||
else:
|
||
input_ids = ids
|
||
attention_mask = [1] * self.seq_len
|
||
labels = [tok if m == 1 else -100 for tok, m in zip(ids, mask)]
|
||
|
||
if dbg_on and seen < dbg_limit:
|
||
sup_tok = sum(1 for v in labels if v != -100)
|
||
print(
|
||
f"[sample][host={host} RANK={rank} LRank={lrank}] "
|
||
f"toks={len(input_ids)} sup_toks={sup_tok} "
|
||
f"seq_len={self.seq_len} pad_id={pad_id}",
|
||
flush=True
|
||
)
|
||
seen += 1
|
||
|
||
yield {
|
||
"input_ids": torch.tensor(input_ids, dtype=torch.long),
|
||
"attention_mask": torch.tensor(attention_mask, dtype=torch.long),
|
||
"labels": torch.tensor(labels, dtype=torch.long),
|
||
}
|
||
|
||
# ----------------- Collator -----------------
|
||
class SFTDataCollator:
|
||
def __init__(self, tokenizer: AutoTokenizer, pad_to_length: Optional[int] = None):
|
||
self.tok = tokenizer
|
||
self.pad_to_length = pad_to_length
|
||
assert self.tok.pad_token_id is not None, "tokenizer.pad_token_id must be set"
|
||
|
||
def __call__(self, features):
|
||
if not features:
|
||
raise RuntimeError("Empty batch passed to collator")
|
||
|
||
def _to_list(x): return x.tolist() if isinstance(x, torch.Tensor) else list(x)
|
||
input_ids = [_to_list(f["input_ids"]) for f in features]
|
||
attn_masks = [_to_list(f["attention_mask"]) for f in features]
|
||
labels_list = [_to_list(f["labels"]) for f in features]
|
||
|
||
max_len_in_batch = max(len(x) for x in input_ids)
|
||
target_len = self.pad_to_length if self.pad_to_length is not None else max_len_in_batch
|
||
|
||
pad_id = self.tok.pad_token_id
|
||
batch_inp, batch_attn, batch_lab = [], [], []
|
||
for inp, msk, lab in zip(input_ids, attn_masks, labels_list):
|
||
pad_len = target_len - len(inp)
|
||
if pad_len < 0:
|
||
inp, msk, lab = inp[:target_len], msk[:target_len], lab[:target_len]
|
||
pad_len = 0
|
||
batch_inp.append(torch.tensor(inp + [pad_id]*pad_len, dtype=torch.long))
|
||
batch_attn.append(torch.tensor(msk + [0]*pad_len, dtype=torch.long))
|
||
batch_lab.append(torch.tensor(lab + [-100]*pad_len, dtype=torch.long))
|
||
|
||
# ensure this batch has supervised tokens
|
||
has_sup = any((lab != -100).any().item() for lab in batch_lab)
|
||
if not has_sup:
|
||
raise RuntimeError("batch has zero supervised tokens; check masking or dataset.")
|
||
|
||
return {
|
||
"input_ids": torch.stack(batch_inp, dim=0),
|
||
"attention_mask": torch.stack(batch_attn, dim=0),
|
||
"labels": torch.stack(batch_lab, dim=0),
|
||
}
|
||
|
||
# ----------------- 参数 -----------------
|
||
def parse_args():
|
||
ap = argparse.ArgumentParser()
|
||
ap.add_argument("--model_name_or_path", type=str, required=True)
|
||
ap.add_argument("--data_glob", type=str, required=True)
|
||
ap.add_argument("--output_dir", type=str, required=True)
|
||
ap.add_argument("--seq_len", type=int, default=4096)
|
||
ap.add_argument("--learning_rate", type=float, default=2e-4) # LoRA通常更大lr
|
||
ap.add_argument("--weight_decay", type=float, default=0.0)
|
||
ap.add_argument("--warmup_ratio", type=float, default=0.02)
|
||
ap.add_argument("--num_train_epochs", type=float, default=1.0)
|
||
ap.add_argument("--max_steps", type=int, default=-1)
|
||
ap.add_argument("--log_interval", type=int, default=10)
|
||
ap.add_argument("--save_steps", type=int, default=500)
|
||
ap.add_argument("--eval_ratio", type=float, default=0.0)
|
||
ap.add_argument("--seed", type=int, default=1337)
|
||
ap.add_argument("--gradient_checkpointing", action="store_true")
|
||
ap.add_argument("--bf16", action="store_true")
|
||
ap.add_argument("--per_device_train_batch_size", type=int, default=1)
|
||
ap.add_argument("--gradient_accumulation_steps", type=int, default=64)
|
||
ap.add_argument("--report_to", type=str, default="tensorboard",
|
||
choices=["none","tensorboard","wandb"])
|
||
ap.add_argument("--wandb_project", type=str, default="ds-qwen3")
|
||
ap.add_argument("--eval_data_glob", type=str, default=None)
|
||
ap.add_argument("--local_rank", type=int, default=-1)
|
||
ap.add_argument("--per_device_eval_batch_size", type=int, default=1)
|
||
ap.add_argument("--deepspeed", type=str, default=None)
|
||
ap.add_argument("--eval_steps", type=int, default=10)
|
||
ap.add_argument("--save_total_limit", type=int, default=2)
|
||
|
||
# ===== LoRA 相关 =====
|
||
ap.add_argument("--lora_r", type=int, default=16)
|
||
ap.add_argument("--lora_alpha", type=float, default=32.0)
|
||
ap.add_argument("--lora_dropout", type=float, default=0.05)
|
||
ap.add_argument("--lora_bias", type=str, default="none", choices=["none","all","lora_only"])
|
||
ap.add_argument("--lora_exclude", type=str, default="", help="逗号分隔的层名后缀(如 lm_head,embed_tokens)用于排除")
|
||
ap.add_argument("--merge_lora_and_save", action="store_true", help="训练后把LoRA合并到基座并另存(占显存/内存大)")
|
||
|
||
return ap.parse_args()
|
||
|
||
# ----------------- 小工具:日志与颜色 -----------------
|
||
def _make_dbg():
|
||
try:
|
||
import colorama
|
||
colorama.just_fix_windows_console()
|
||
except Exception:
|
||
pass
|
||
def _use_color() -> bool:
|
||
if os.environ.get("NO_COLOR"): return False
|
||
if os.environ.get("FORCE_COLOR"): return True
|
||
return sys.stdout.isatty()
|
||
class _C:
|
||
reset="\033[0m"; gray="\033[90m"; green="\033[32m"; yellow="\033[33m"; red="\033[31m"; cyan="\033[36m"
|
||
_LEVEL_ALIAS={"": "info", None: "info", "ok":"ok","success":"ok","warn":"warn","warning":"warn","err":"err","error":"err","fatal":"err","fail":"err","info":"info"}
|
||
_LEVEL_COLOR={"ok":_C.green,"warn":_C.yellow,"err":_C.red,"info":_C.cyan}
|
||
def _norm_level(level):
|
||
if level is None: return "info"
|
||
if isinstance(level,(int,float)):
|
||
if level>=40: return "err"
|
||
if level>=30: return "warn"
|
||
return "info"
|
||
if isinstance(level,str):
|
||
key=level.strip().lower()
|
||
return _LEVEL_ALIAS.get(key,"info")
|
||
return "info"
|
||
def _paint(s,c): return f"{c}{s}{_C.reset}" if _use_color() else s
|
||
def dbg(msg, level=None):
|
||
lvl=_norm_level(level); color=_LEVEL_COLOR.get(lvl,_C.cyan)
|
||
host=socket.gethostname(); rank=os.environ.get("RANK","0"); lrank=os.environ.get("LOCAL_RANK","-1")
|
||
prefix=f"[dbg][host={host} RANK={rank} LOCAL_RANK={lrank}] "
|
||
print(_paint(prefix,_C.gray)+_paint(str(msg),color), flush=True)
|
||
return dbg
|
||
dbg=_make_dbg()
|
||
|
||
# ----------------- LoRA 目标层自动发现:所有线性层 -----------------
|
||
def discover_all_linear_leaf_names(model, exclude: List[str]) -> List[str]:
|
||
"""
|
||
返回 LoRA target_modules 需要的“叶子模块名后缀”集合(去重)。
|
||
默认遍历 nn.Linear / bitsandbytes 的 Linear4bit/8bit 等线性类。
|
||
"""
|
||
linear_like = [torch.nn.Linear]
|
||
try:
|
||
import bitsandbytes as bnb
|
||
import bitsandbytes.nn as bnbnn
|
||
# 兼容 bnb 线性封装
|
||
for cls_name in ("Linear4bit", "Linear8bitLt"):
|
||
if hasattr(bnbnn, cls_name):
|
||
linear_like.append(getattr(bnbnn, cls_name))
|
||
except Exception:
|
||
pass
|
||
|
||
suffixes=set()
|
||
for full_name, module in model.named_modules():
|
||
if any(isinstance(module, cls) for cls in linear_like):
|
||
last = full_name.split(".")[-1]
|
||
if last not in exclude:
|
||
suffixes.add(last)
|
||
targets = sorted(suffixes)
|
||
if not targets:
|
||
raise RuntimeError("未发现任何线性层可用于 LoRA。请检查模型结构或放宽排除列表。")
|
||
return targets
|
||
|
||
# ----------------- 主函数 -----------------
|
||
def main():
|
||
args = parse_args()
|
||
|
||
# 只有 rank0 用 wandb
|
||
if os.environ.get("RANK", "0") != "0" and args.report_to == "wandb":
|
||
print(f"[rank {os.environ.get('RANK')}] force report_to=none", flush=True)
|
||
args.report_to = "none"
|
||
|
||
set_seed(args.seed)
|
||
|
||
# DeepSpeed
|
||
use_ds = bool(args.deepspeed and os.path.isfile(args.deepspeed))
|
||
dschf = None
|
||
if use_ds:
|
||
try:
|
||
from transformers.integrations.deepspeed import HfDeepSpeedConfig
|
||
src = "transformers.integrations.deepspeed"
|
||
except Exception:
|
||
try:
|
||
from transformers import HfDeepSpeedConfig
|
||
src = "transformers"
|
||
except Exception as e:
|
||
raise RuntimeError("当前 transformers 版本未提供 HfDeepSpeedConfig,请升级/降级 transformers") from e
|
||
dschf = HfDeepSpeedConfig(args.deepspeed)
|
||
dbg(f"HfDeepSpeedConfig loaded from {src}")
|
||
|
||
# W&B(rank0)
|
||
if args.report_to == "wandb":
|
||
os.environ.setdefault("WANDB_PROJECT", args.wandb_project)
|
||
is_rank0 = os.environ.get("RANK", "0") == "0" and os.environ.get("LOCAL_RANK", "-1") in ("0","-1")
|
||
if is_rank0:
|
||
import wandb
|
||
try:
|
||
os.environ.pop("WANDB_RUN_ID", None)
|
||
extra={}
|
||
if os.getenv("WANDB_NAME"): extra["name"]=os.getenv("WANDB_NAME")
|
||
if os.getenv("WANDB_GROUP"): extra["group"]=os.getenv("WANDB_GROUP")
|
||
if os.getenv("WANDB_RESUME"): extra["resume"]=os.getenv("WANDB_RESUME")
|
||
run = wandb.init(
|
||
project=args.wandb_project,
|
||
entity=os.getenv("WANDB_ENTITY") or os.getenv("WB_ENTITY") or "hailin",
|
||
settings=wandb.Settings(
|
||
base_url=os.getenv("WANDB_BASE_URL","https://wandb.szaiai.com"),
|
||
init_timeout=int(os.getenv("WANDB_INIT_TIMEOUT","300")),
|
||
),
|
||
**extra,
|
||
)
|
||
print(f"[wandb] run url: {getattr(run, 'url', '(n/a)')}", flush=True)
|
||
except Exception as e:
|
||
print(f"[wandb] init failed -> disable logging, reason={e}", flush=True)
|
||
os.environ["WANDB_DISABLED"]="true"
|
||
args.report_to="none"
|
||
else:
|
||
os.environ["WANDB_DISABLED"]="true"
|
||
|
||
import transformers as hf
|
||
try:
|
||
import deepspeed as ds
|
||
ds_ver = ds.__version__
|
||
except Exception:
|
||
ds_ver = "n/a"
|
||
|
||
dbg(f"torch={torch.__version__}, transformers={hf.__version__}, deepspeed={ds_ver}")
|
||
dbg(f"args={args}")
|
||
dbg("ENV: WORLD_SIZE=%s RANK=%s LOCAL_RANK=%s MASTER_ADDR=%s MASTER_PORT=%s CUDA_VISIBLE_DEVICES=%s" % (
|
||
os.environ.get("WORLD_SIZE"),
|
||
os.environ.get("RANK"),
|
||
os.environ.get("LOCAL_RANK", str(args.local_rank)),
|
||
os.environ.get("MASTER_ADDR"),
|
||
os.environ.get("MASTER_PORT"),
|
||
os.environ.get("CUDA_VISIBLE_DEVICES"),
|
||
))
|
||
dbg(f"cuda_available={torch.cuda.is_available()} device_count={torch.cuda.device_count()}")
|
||
|
||
# 分布式初始化
|
||
world_size = int(os.environ.get("WORLD_SIZE", "1"))
|
||
rank = int(os.environ.get("RANK", "0"))
|
||
local_rank = int(os.environ.get("LOCAL_RANK", str(args.local_rank)))
|
||
dbg(f"pre-init: world_size={world_size}, rank={rank}, local_rank={local_rank}")
|
||
|
||
if torch.cuda.is_available() and local_rank >= 0:
|
||
torch.cuda.set_device(local_rank)
|
||
dbg(f"set_device({local_rank}); current_device={torch.cuda.current_device()} "
|
||
f"name={torch.cuda.get_device_name(torch.cuda.current_device())}")
|
||
else:
|
||
dbg("no cuda or invalid local_rank; not calling set_device")
|
||
|
||
if world_size > 1 and dist.is_available() and not dist.is_initialized():
|
||
backend = "nccl" if torch.cuda.is_available() else "gloo"
|
||
dbg(f"init_process_group backend={backend} via env://")
|
||
dist.init_process_group(backend=backend, init_method="env://")
|
||
else:
|
||
dbg(f"skip init_process_group: world_size>1? {world_size>1}, dist_available={dist.is_available()}, already_init={dist.is_initialized()}")
|
||
|
||
if dist.is_available() and dist.is_initialized():
|
||
try:
|
||
dbg(f"dist.get_backend()={dist.get_backend()} "
|
||
f"dist.get_world_size()={dist.get_world_size()} dist.get_rank()={dist.get_rank()}")
|
||
except Exception as e:
|
||
dbg(f"dist query error: {e}")
|
||
|
||
# tokenizer
|
||
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=True, trust_remote_code=True)
|
||
if tokenizer.pad_token is None:
|
||
tokenizer.pad_token = tokenizer.eos_token
|
||
try:
|
||
if getattr(tokenizer, "padding_side", None) != "left":
|
||
tokenizer.padding_side = "left"
|
||
except Exception:
|
||
pass
|
||
tokenizer.model_max_length = args.seq_len
|
||
dbg(f"tokenizer.pad_token_id={tokenizer.pad_token_id} "
|
||
f"pad_token={repr(tokenizer.pad_token)} model_max_length={tokenizer.model_max_length}")
|
||
|
||
# dtype
|
||
def _bf16_supported():
|
||
if not torch.cuda.is_available():
|
||
return False
|
||
if hasattr(torch.cuda, "is_bf16_supported"):
|
||
return torch.cuda.is_bf16_supported()
|
||
major, minor = torch.cuda.get_device_capability()
|
||
return (major, minor) >= (8, 0)
|
||
use_bf16 = bool(args.bf16 and _bf16_supported())
|
||
dtype = (torch.bfloat16 if use_bf16 else
|
||
(torch.float16 if torch.cuda.is_available() else torch.float32))
|
||
|
||
try:
|
||
torch.backends.cuda.matmul.allow_tf32 = True
|
||
torch.backends.cudnn.allow_tf32 = True
|
||
torch.set_float32_matmul_precision("high")
|
||
except Exception:
|
||
pass
|
||
|
||
# 基座模型
|
||
model = AutoModelForCausalLM.from_pretrained(
|
||
args.model_name_or_path,
|
||
torch_dtype=dtype,
|
||
low_cpu_mem_usage=True,
|
||
trust_remote_code=True,
|
||
attn_implementation="sdpa",
|
||
)
|
||
|
||
# pad/alibi 等
|
||
model.config.pad_token_id = tokenizer.pad_token_id
|
||
if getattr(model, "generation_config", None) is not None:
|
||
model.generation_config.pad_token_id = tokenizer.pad_token_id
|
||
model.config.use_cache = False # 训练必须关掉 cache
|
||
|
||
# ============ 关键改动:注入 LoRA ============
|
||
# 1) 决定 LoRA 目标模块:默认“全模型所有线性层”
|
||
exclude = [x.strip() for x in args.lora_exclude.split(",") if x.strip()]
|
||
target_modules = discover_all_linear_leaf_names(model, exclude)
|
||
if is_main_process():
|
||
print(f"[lora] target_modules (auto, all-linear minus exclude) = {target_modules}", flush=True)
|
||
|
||
# 2) 构造 LoRA 配置并注入
|
||
from peft import LoraConfig, get_peft_model
|
||
lora_cfg = LoraConfig(
|
||
r=args.lora_r,
|
||
lora_alpha=args.lora_alpha,
|
||
lora_dropout=args.lora_dropout,
|
||
bias=args.lora_bias,
|
||
task_type="CAUSAL_LM",
|
||
target_modules=target_modules,
|
||
)
|
||
model = get_peft_model(model, lora_cfg)
|
||
|
||
try:
|
||
model.print_trainable_parameters()
|
||
except Exception:
|
||
pass
|
||
|
||
# 3) 再次配置梯度检查点(注入后调用更稳)
|
||
if args.gradient_checkpointing:
|
||
model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": False})
|
||
|
||
# 关键:让输入参与梯度,从而兼容 checkpoint
|
||
try:
|
||
model.enable_input_require_grads()
|
||
except AttributeError:
|
||
# 旧版 transformers 兜底:给 embedding 输出打 requires_grad
|
||
emb = model.get_input_embeddings()
|
||
if hasattr(emb, "register_forward_hook"):
|
||
emb.register_forward_hook(lambda m, inp, out: out.requires_grad_(True))
|
||
|
||
# 4) 打印可训练参数占比
|
||
try:
|
||
from peft import get_peft_model_state_dict
|
||
trainable, total = 0, 0
|
||
for n, p in model.named_parameters():
|
||
total += p.numel()
|
||
if p.requires_grad:
|
||
trainable += p.numel()
|
||
pct = (trainable / total * 100.0) if total else 0.0
|
||
if is_main_process():
|
||
print(f"[lora] trainable params: {trainable} / {total} ({pct:.2f}%)", flush=True)
|
||
except Exception:
|
||
pass
|
||
# ============ LoRA 注入结束 ============
|
||
|
||
dbg(f"post-config: use_cache={model.config.use_cache} "
|
||
f"model.pad_token_id={model.config.pad_token_id} "
|
||
f"gen.pad_token_id={getattr(getattr(model,'generation_config',None),'pad_token_id',None)} "
|
||
f"tok.pad={tokenizer.pad_token}/{tokenizer.pad_token_id}")
|
||
|
||
assert tokenizer.pad_token_id is not None, "tokenizer.pad_token_id must not be None"
|
||
assert model.config.pad_token_id == tokenizer.pad_token_id, \
|
||
f"model.pad_token_id {model.config.pad_token_id} != tokenizer.pad_token_id {tokenizer.pad_token_id}"
|
||
|
||
# ===== 数据检查 =====
|
||
host = socket.gethostname()
|
||
files = sorted(glob.glob(args.data_glob))
|
||
if len(files) == 0:
|
||
raise FileNotFoundError(
|
||
f"[host={host} rank={rank}] No files matched DATA_GLOB={args.data_glob}\n"
|
||
"每台机器都必须在相同本地路径下放置数据;"
|
||
)
|
||
if is_main_process():
|
||
print(f"[data] matched {len(files)} files on host={host}, example[0]={files[0]}", flush=True)
|
||
|
||
ds_stream_probe = load_dataset("json", data_files={"train": files}, split="train", streaming=True)
|
||
def ex_iter_probe():
|
||
for ex in ds_stream_probe:
|
||
yield ex
|
||
train_stream_probe = QwenChatSFTDataset(ex_iter_probe(), tokenizer, seq_len=args.seq_len)
|
||
try:
|
||
sample = next(iter(train_stream_probe))
|
||
except StopIteration:
|
||
raise RuntimeError(
|
||
f"[host={host} rank={rank}] 数据文件匹配到了,但没有产生任何可训练样本。"
|
||
)
|
||
ids, attn, labs = sample["input_ids"], sample["attention_mask"], sample["labels"]
|
||
assert (labs != -100).any(), "[fatal] no supervised tokens in first valid sample"
|
||
assert bool((labs[attn == 0] == -100).all()), "[fatal] padded tokens must have label -100"
|
||
|
||
ds_stream2 = load_dataset("json", data_files={"train": files}, split="train", streaming=True).shuffle(buffer_size=50000, seed=args.seed)
|
||
# train_stream = QwenChatSFTDataset((ex for ex in ds_stream2), tokenizer, seq_len=args.seq_len)
|
||
train_stream = QwenChatSFTDataset(ds_stream2, tokenizer, seq_len=args.seq_len)
|
||
|
||
ds_stream_probe2 = load_dataset("json", data_files={"train": files}, split="train", streaming=True)
|
||
probe_stream = QwenChatSFTDataset((ex for ex in ds_stream_probe2), tokenizer, seq_len=args.seq_len)
|
||
|
||
def has_at_least(stream, n: int):
|
||
it = iter(stream)
|
||
for _ in range(n):
|
||
try:
|
||
next(it)
|
||
except StopIteration:
|
||
return 0
|
||
return 1
|
||
|
||
need = max(1, args.gradient_accumulation_steps)
|
||
local_ok = has_at_least(probe_stream, need)
|
||
|
||
if dist.is_available() and dist.is_initialized():
|
||
t = torch.tensor(local_ok, device=(f"cuda:{local_rank}" if (torch.cuda.is_available() and local_rank >= 0) else "cpu"))
|
||
dist.all_reduce(t, op=dist.ReduceOp.MIN)
|
||
if t.item() == 0:
|
||
if is_main_process():
|
||
print(
|
||
f"[FATAL] 至少有一个 rank 在一个优化 step 内供不上 {need} 个微批 (GA={need})。 ",
|
||
flush=True
|
||
)
|
||
dist.barrier()
|
||
sys.exit(2)
|
||
else:
|
||
if local_ok == 0:
|
||
print(
|
||
f"[FATAL] 本机在一个优化 step 内供不上 {need} 个微批 (GA={need})。",
|
||
flush=True
|
||
)
|
||
sys.exit(2)
|
||
|
||
# ---- Eval ----
|
||
eval_dataset: Optional[Dataset] = None
|
||
class ListDataset(Dataset):
|
||
def __init__(self, items): self.items = items
|
||
def __len__(self): return len(self.items)
|
||
def __getitem__(self, idx): return self.items[idx]
|
||
|
||
if args.eval_data_glob:
|
||
eval_files = sorted(glob.glob(args.eval_data_glob))
|
||
if len(eval_files) == 0:
|
||
raise FileNotFoundError(f"[host={host} rank={rank}] No eval files matched EVAL_DATA_GLOB={args.eval_data_glob}")
|
||
if is_main_process():
|
||
print(f"[eval] matched {len(eval_files)} files, example[0]={eval_files[0]}", flush=True)
|
||
ds_eval_stream = load_dataset("json", data_files={"eval": eval_files}, split="eval", streaming=True)
|
||
def ex_iter_eval():
|
||
for ex in ds_eval_stream:
|
||
yield ex
|
||
eval_iterable = QwenChatSFTDataset(ex_iter_eval(), tokenizer, seq_len=args.seq_len)
|
||
eval_items: List[Dict[str, torch.Tensor]] = []
|
||
for sample in eval_iterable:
|
||
eval_items.append(sample)
|
||
if len(eval_items) == 0:
|
||
raise RuntimeError("[eval] eval_data_glob 读到了 0 条有效样本,请检查 messages 结构。")
|
||
eval_dataset = ListDataset(eval_items)
|
||
elif args.eval_ratio and args.eval_ratio > 0:
|
||
desired_eval_batches = 200
|
||
tmp_stream = load_dataset("json", data_files={"train": files}, split="train", streaming=True)
|
||
def ex_iter_eval2():
|
||
for ex in tmp_stream:
|
||
yield ex
|
||
eval_stream = QwenChatSFTDataset(ex_iter_eval2(), tokenizer, seq_len=args.seq_len)
|
||
eval_samples = []
|
||
it = iter(eval_stream)
|
||
for _ in range(desired_eval_batches):
|
||
try:
|
||
eval_samples.append(next(it))
|
||
except StopIteration:
|
||
break
|
||
if len(eval_samples) > 0:
|
||
eval_dataset = ListDataset(eval_samples)
|
||
|
||
if eval_dataset is not None:
|
||
ws = max(world_size, 1)
|
||
be = max(1, args.per_device_eval_batch_size)
|
||
global_bs = ws * be
|
||
r = len(eval_dataset) % global_bs
|
||
if r != 0:
|
||
pad_need = global_bs - r
|
||
eval_dataset.items += eval_dataset.items[:pad_need]
|
||
if is_main_process():
|
||
print(f"[eval] padded eval set to {len(eval_dataset)} "
|
||
f"(world_size={ws}, per_device_eval_batch_size={be}, global_bs={global_bs})",
|
||
flush=True)
|
||
assert len(eval_dataset) % global_bs == 0
|
||
|
||
data_collator = SFTDataCollator(tokenizer, pad_to_length=None)
|
||
|
||
os.makedirs(args.output_dir, exist_ok=True)
|
||
logging_dir = os.path.join(args.output_dir, "logs")
|
||
os.makedirs(logging_dir, exist_ok=True)
|
||
|
||
# ---- TrainingArguments ----
|
||
ta_kwargs = {}
|
||
sig = inspect.signature(TrainingArguments.__init__).parameters
|
||
if eval_dataset is not None:
|
||
if "eval_strategy" in sig:
|
||
ta_kwargs["eval_strategy"] = "steps"
|
||
elif "evaluation_strategy" in sig:
|
||
ta_kwargs["evaluation_strategy"] = "steps"
|
||
else:
|
||
if "eval_strategy" in sig:
|
||
ta_kwargs["eval_strategy"] = "no"
|
||
elif "evaluation_strategy" in sig:
|
||
ta_kwargs["evaluation_strategy"] = "no"
|
||
|
||
ta_sig = inspect.signature(TrainingArguments.__init__).parameters
|
||
ta_kwargs2 = dict(
|
||
output_dir=args.output_dir,
|
||
logging_dir=logging_dir,
|
||
run_name=f"lora-{os.path.basename(args.output_dir)}-{socket.gethostname()}",
|
||
do_train=True,
|
||
do_eval=(eval_dataset is not None),
|
||
eval_steps=(args.eval_steps if eval_dataset is not None else None),
|
||
per_device_train_batch_size=args.per_device_train_batch_size,
|
||
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
||
learning_rate=args.learning_rate,
|
||
weight_decay=args.weight_decay,
|
||
warmup_ratio=args.warmup_ratio,
|
||
num_train_epochs = args.num_train_epochs,
|
||
max_steps=args.max_steps if args.max_steps > 0 else -1,
|
||
lr_scheduler_type="cosine",
|
||
logging_steps=args.log_interval,
|
||
save_steps=args.save_steps,
|
||
save_total_limit=args.save_total_limit,
|
||
deepspeed=(args.deepspeed if use_ds else None),
|
||
dataloader_drop_last=False,
|
||
dataloader_num_workers=0,
|
||
label_smoothing_factor=0.0,
|
||
per_device_eval_batch_size=args.per_device_eval_batch_size,
|
||
report_to=([] if args.report_to == "none" else [args.report_to]),
|
||
gradient_checkpointing=args.gradient_checkpointing,
|
||
remove_unused_columns=False,
|
||
save_on_each_node=True,
|
||
logging_first_step=True,
|
||
**ta_kwargs,
|
||
)
|
||
if "dataloader_pin_memory" in ta_sig:
|
||
ta_kwargs2["dataloader_pin_memory"] = False
|
||
if "torch_compile" in ta_sig:
|
||
ta_kwargs2["torch_compile"] = False
|
||
ta_kwargs2.update({"bf16": (dtype==torch.bfloat16), "fp16": (dtype==torch.float16)})
|
||
|
||
ta_kwargs2.update(dict(
|
||
load_best_model_at_end=True,
|
||
metric_for_best_model="eval_loss",
|
||
greater_is_better=False,
|
||
))
|
||
|
||
training_args = TrainingArguments(**ta_kwargs2)
|
||
|
||
trainer_kwargs = {}
|
||
if "processing_class" in inspect.signature(Trainer.__init__).parameters:
|
||
trainer_kwargs["processing_class"] = tokenizer
|
||
else:
|
||
trainer_kwargs["tokenizer"] = tokenizer
|
||
|
||
trainer = DebugTrainer(
|
||
model=model,
|
||
args=training_args,
|
||
train_dataset=train_stream,
|
||
eval_dataset=eval_dataset,
|
||
data_collator=data_collator,
|
||
**trainer_kwargs,
|
||
)
|
||
trainer.add_callback(CsvLossLogger(csv_path=os.path.join(args.output_dir, "loss.csv")))
|
||
|
||
# ==== 断点恢复判定 ====
|
||
def last_step(path: str) -> int:
|
||
ck = get_last_checkpoint(path)
|
||
if ck is None:
|
||
return -1
|
||
base = os.path.basename(ck)
|
||
try:
|
||
return int(base.split("-")[-1])
|
||
except Exception:
|
||
return -1
|
||
|
||
local_last = last_step(args.output_dir)
|
||
device = torch.device(f"cuda:{local_rank}" if (torch.cuda.is_available() and local_rank >= 0) else "cpu")
|
||
|
||
resume_flag = None
|
||
if dist.is_available() and dist.is_initialized():
|
||
has_local = torch.tensor(1 if local_last >= 0 else 0, device=device)
|
||
dist.all_reduce(has_local, op=dist.ReduceOp.MIN)
|
||
if has_local.item() == 1:
|
||
ts = torch.tensor(local_last, device=device)
|
||
world = dist.get_world_size()
|
||
buf = [torch.zeros_like(ts) for _ in range(world)]
|
||
dist.all_gather(buf, ts)
|
||
steps = [b.item() for b in buf]
|
||
k = min(steps)
|
||
if k >= 0:
|
||
resume_flag = os.path.join(args.output_dir, f"checkpoint-{k}")
|
||
if is_main_process():
|
||
print(f"[resume] steps={steps}, resume={resume_flag}", flush=True)
|
||
else:
|
||
if local_last >= 0:
|
||
resume_flag = os.path.join(args.output_dir, f"checkpoint-{local_last}")
|
||
|
||
print_once(f"[host={socket.gethostname()}] Resume = {resume_flag is not None}")
|
||
|
||
if dist.is_available() and dist.is_initialized():
|
||
present = torch.tensor(1 if (resume_flag is not None and os.path.isdir(resume_flag)) else 0, device=device)
|
||
dist.all_reduce(present, op=dist.ReduceOp.MIN)
|
||
if present.item() == 0:
|
||
if is_main_process():
|
||
print(f"[resume] {resume_flag} missing on some ranks -> disable resume.", flush=True)
|
||
resume_flag = None
|
||
dist.barrier()
|
||
else:
|
||
if resume_flag is not None and not os.path.isdir(resume_flag):
|
||
print(f"[resume] {resume_flag} not found locally -> disable resume.", flush=True)
|
||
resume_flag = None
|
||
|
||
trainer.add_callback(EarlyStoppingCallback(early_stopping_patience=3, early_stopping_threshold=1e-3))
|
||
|
||
print_once(f"[resume] final = {resume_flag if resume_flag else 'None (fresh start)'}")
|
||
print_once("***** Starting LoRA training *****")
|
||
|
||
dbg(f"allocated={torch.cuda.memory_allocated()/1024**2:.1f} MB, "
|
||
f"reserved={torch.cuda.memory_reserved()/1024**2:.1f} MB")
|
||
|
||
train_result = trainer.train(resume_from_checkpoint=resume_flag)
|
||
# 保存:此处保存的是“LoRA 适配器”(非合并的整权重)
|
||
trainer.save_model() # 保存到 output_dir, 包含 adapter_model.bin & adapter_config.json
|
||
|
||
metrics = train_result.metrics
|
||
trainer.log_metrics("train", metrics)
|
||
trainer.save_metrics("train", metrics)
|
||
trainer.save_state()
|
||
|
||
if eval_dataset is not None:
|
||
print_once("***** Running eval *****")
|
||
eval_metrics = trainer.evaluate()
|
||
trainer.log_metrics("eval", eval_metrics)
|
||
trainer.save_metrics("eval", eval_metrics)
|
||
|
||
# (可选)合并 LoRA 并另存
|
||
if args.merge_lora_and_save and is_main_process():
|
||
print("[lora] merging LoRA into base weights ...", flush=True)
|
||
merged = model.merge_and_unload() # 需要足够显存/内存
|
||
merge_dir = os.path.join(args.output_dir, "merged")
|
||
os.makedirs(merge_dir, exist_ok=True)
|
||
merged.save_pretrained(merge_dir, safe_serialization=True)
|
||
tokenizer.save_pretrained(merge_dir)
|
||
print(f"[lora] merged model saved to: {merge_dir}", flush=True)
|
||
|
||
print_once("Done.")
|
||
|
||
if __name__ == "__main__":
|
||
main()
|