435 lines
19 KiB
Bash
Executable File
435 lines
19 KiB
Bash
Executable File
#!/usr/bin/env bash
|
||
set -euo pipefail
|
||
|
||
# ===== 可调参数 =====
|
||
CKPT_ROOT="/home/test/checkpoints/q3-32b-lora" # 若实际是 .../checkpoint-62/global_step62,请把 CKPT_ROOT 改成 .../checkpoint-62
|
||
TAG="global_step200"
|
||
HOSTS=(tn01 tn02 tn03 tn04 tn05 tn06)
|
||
AGGREGATOR_HOST="tn06" # 本脚本运行/汇总所在机器
|
||
EXPECTED_SHARDS_PER_HOST=4 # 每机应写出分片数(按你的并行布局)
|
||
MAX_SHARD_SIZE="5GB"
|
||
|
||
# ★★★ 参考模型目录(用来做 LoRA 的 Qwen3-32B 或其 Instruct 变体) ★★★
|
||
REF_MODEL_DIR="/home/test/Qwen3-32B"
|
||
|
||
STRICT_PRECHECK=true # true: 预检不通过就退出;false: 仅告警
|
||
SSH_OPTS="-o BatchMode=yes -o StrictHostKeyChecking=accept-new -o ConnectTimeout=8"
|
||
RSYNC_OPTS="-a --info=progress2 --human-readable --partial --inplace"
|
||
# ====================
|
||
|
||
# ===== 派生参数(一般不用改) =====
|
||
EXPECTED_TOTAL_SHARDS=$(( EXPECTED_SHARDS_PER_HOST * ${#HOSTS[@]} ))
|
||
STAGING_BASE="${CKPT_ROOT}/_staging"
|
||
STAGING_TAG_DIR="${STAGING_BASE}/${TAG}"
|
||
OUT_DIR="${CKPT_ROOT}/merged-${TAG}"
|
||
TMP_PT_DIR="${CKPT_ROOT}/_tmp-fp32-pt-${TAG}" # 临时 FP32 输出目录
|
||
export OUT_DIR TMP_PT_DIR MAX_SHARD_SIZE REF_MODEL_DIR
|
||
# =================================
|
||
|
||
echo "== 预检查 SSH =="
|
||
for h in "${HOSTS[@]}"; do
|
||
ssh ${SSH_OPTS} "$h" "true" >/dev/null || { echo "!! 无法免密 SSH 到 $h"; exit 1; }
|
||
done
|
||
|
||
echo "== 0/7 逐节点分片预检(统计各机 ${CKPT_ROOT}/${TAG} 下的 *model_states.pt)=="
|
||
remote_total=0
|
||
agg_cnt=0
|
||
for h in "${HOSTS[@]}"; do
|
||
c=$(ssh ${SSH_OPTS} "$h" "find '${CKPT_ROOT}/${TAG}' -maxdepth 1 -type f -name '*model_states.pt' 2>/dev/null | wc -l" || echo 0)
|
||
c=$(echo "$c" | tr -d ' ')
|
||
printf " - %-8s: %s 分片\n" "$h" "$c"
|
||
if [[ "$h" == "$AGGREGATOR_HOST" ]]; then
|
||
agg_cnt=$c
|
||
else
|
||
remote_total=$(( remote_total + c ))
|
||
if (( c < EXPECTED_SHARDS_PER_HOST )); then
|
||
echo "!! 预警:$h 分片仅 $c 个(期望 ${EXPECTED_SHARDS_PER_HOST})" >&2
|
||
fi
|
||
fi
|
||
done
|
||
expected_remote_total=$(( EXPECTED_TOTAL_SHARDS - EXPECTED_SHARDS_PER_HOST ))
|
||
echo " - 远端合计(不含 ${AGGREGATOR_HOST}):$remote_total(期望 ${expected_remote_total})"
|
||
echo " - ${AGGREGATOR_HOST} 自身:$agg_cnt(期望 ${EXPECTED_SHARDS_PER_HOST})"
|
||
|
||
precheck_ok=true
|
||
if (( remote_total != expected_remote_total )); then
|
||
echo "!! 远端总分片不等:实际 ${remote_total} / 期望 ${expected_remote_total}" >&2
|
||
precheck_ok=false
|
||
fi
|
||
if (( agg_cnt < EXPECTED_SHARDS_PER_HOST )); then
|
||
echo "!! ${AGGREGATOR_HOST} 本机分片不足:实际 ${agg_cnt} / 期望 ${EXPECTED_SHARDS_PER_HOST}" >&2
|
||
precheck_ok=false
|
||
fi
|
||
if [[ "${STRICT_PRECHECK}" == "true" && "${precheck_ok}" == "false" ]]; then
|
||
echo "!! STRICT_PRECHECK 开启:预检不通过,停止执行" >&2
|
||
exit 2
|
||
fi
|
||
[[ "${precheck_ok}" == "true" ]] && echo "OK: 预检通过(远端=${remote_total}、本机=${agg_cnt},总计期望=${EXPECTED_TOTAL_SHARDS})" || echo "WARN: 预检未通过(分片数量与期望不符),已启用宽松模式,继续执行..."
|
||
|
||
echo "== 1/7 准备 staging 目录(干净环境)=="
|
||
rm -rf "${STAGING_TAG_DIR}"
|
||
mkdir -p "${STAGING_TAG_DIR}"
|
||
|
||
echo "== 2/7 收集分片到 staging =="
|
||
for h in "${HOSTS[@]}"; do
|
||
if ssh ${SSH_OPTS} "$h" "test -d '${CKPT_ROOT}/${TAG}'"; then
|
||
echo " - 收集 ${h}:${CKPT_ROOT}/${TAG}/ -> ${STAGING_TAG_DIR}/"
|
||
rsync ${RSYNC_OPTS} -e "ssh ${SSH_OPTS}" \
|
||
"${h}:${CKPT_ROOT}/${TAG}/" "${STAGING_TAG_DIR}/" || true
|
||
else
|
||
echo " - ${h} 无 ${CKPT_ROOT}/${TAG},跳过"
|
||
fi
|
||
done
|
||
|
||
echo "== 3/7 在 staging 校验总分片数(应为 ${EXPECTED_TOTAL_SHARDS})=="
|
||
mapfile -t SHARDS < <(find "${STAGING_TAG_DIR}" -maxdepth 1 -type f -name "*model_states.pt" | sort -u)
|
||
CNT=${#SHARDS[@]}
|
||
echo " - staging 中发现分片数:${CNT}"
|
||
if (( CNT != EXPECTED_TOTAL_SHARDS )); then
|
||
echo "!! 分片总数不等:staging 实际 ${CNT} / 期望 ${EXPECTED_TOTAL_SHARDS}。请检查是否缺片或命名不一致。" >&2
|
||
exit 3
|
||
fi
|
||
|
||
echo "== 4/7 合并分片 -> 临时 FP32(优先单文件 pytorch_model.bin;不支持则分片)=="
|
||
rm -rf "${TMP_PT_DIR}"
|
||
mkdir -p "${TMP_PT_DIR}"
|
||
|
||
python - <<PY
|
||
import os, json, glob, torch
|
||
from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict
|
||
|
||
TMP_PT_DIR = r"${TMP_PT_DIR}"
|
||
STAGING_BASE = r"${STAGING_BASE}"
|
||
TAG = r"${TAG}"
|
||
|
||
sd_single = os.path.join(TMP_PT_DIR, "pytorch_model.bin")
|
||
idx_json = os.path.join(TMP_PT_DIR, "pytorch_model.bin.index.json")
|
||
|
||
# 优先:新式接口,直接写单文件
|
||
ok = False
|
||
try:
|
||
convert_zero_checkpoint_to_fp32_state_dict(
|
||
checkpoint_dir=STAGING_BASE,
|
||
tag=TAG,
|
||
output_file=sd_single,
|
||
safe_serialization=False,
|
||
)
|
||
ok = True
|
||
except TypeError:
|
||
# 回退:写目录(多分片)
|
||
convert_zero_checkpoint_to_fp32_state_dict(
|
||
checkpoint_dir=STAGING_BASE,
|
||
tag=TAG,
|
||
output_dir=TMP_PT_DIR,
|
||
safe_serialization=False,
|
||
)
|
||
|
||
# 若写成分片且存在索引,记录一下
|
||
if os.path.exists(sd_single):
|
||
print("合并完成(FP32 单文件):", sd_single)
|
||
else:
|
||
shards = sorted(glob.glob(os.path.join(TMP_PT_DIR, "pytorch_model-*.bin")))
|
||
if os.path.exists(idx_json):
|
||
with open(idx_json) as f: j = json.load(f)
|
||
n = len(set(j.get("weight_map", {}).values()))
|
||
print(f"合并完成(FP32 多分片):{n} 片,索引 {idx_json}")
|
||
else:
|
||
print(f"合并完成(FP32 多分片):{len(shards)} 片(无 index.json)")
|
||
PY
|
||
|
||
# ★★★ 从参考模型复制 config/tokenizer 到临时 FP32 目录(装载需要)★★★
|
||
echo "== 4.1/7 从参考模型复制 config/tokenizer 到临时 FP32 目录(装载需要)=="
|
||
for f in config.json generation_config.json tokenizer_config.json tokenizer.json merges.txt vocab.json special_tokens_map.json added_tokens.json; do
|
||
[[ -f "${REF_MODEL_DIR}/${f}" ]] && cp -f "${REF_MODEL_DIR}/${f}" "${TMP_PT_DIR}/" || true
|
||
done
|
||
|
||
echo "== 5/7 装载 REF 结构 + 灌入 FP32;若检测到 LoRA → 导出 adapter;否则保存 BF16 分片 safetensors =="
|
||
python - <<'PY'
|
||
import os, re, json, sys, torch, shutil, glob
|
||
from transformers import AutoConfig, AutoModelForCausalLM
|
||
from safetensors.torch import save_file
|
||
|
||
TMP_PT_DIR = os.environ["TMP_PT_DIR"]
|
||
REF_DIR = os.environ["REF_MODEL_DIR"]
|
||
OUT_DIR = os.environ["OUT_DIR"]
|
||
MAX_SHARD_SIZE = os.environ.get("MAX_SHARD_SIZE","5GB")
|
||
|
||
sd_single = os.path.join(TMP_PT_DIR, "pytorch_model.bin")
|
||
idx_json = os.path.join(TMP_PT_DIR, "pytorch_model.bin.index.json")
|
||
|
||
def log(*a, **k): print(*a, **k, flush=True)
|
||
|
||
def parse_index(idx_path):
|
||
with open(idx_path) as f:
|
||
j = json.load(f)
|
||
weight_map = j.get("weight_map", {})
|
||
shard_to_keys = {}
|
||
for k, shard in weight_map.items():
|
||
shard_to_keys.setdefault(shard, []).append(k)
|
||
return weight_map, shard_to_keys
|
||
|
||
def detect_lora_from_index(weight_map):
|
||
# 直接从权重名判断,不用先加载大权重
|
||
has = any((".lora_A" in k) or (".lora_B" in k) or (".lora_alpha" in k) for k in weight_map)
|
||
return has
|
||
|
||
def stream_collect_lora_from_shards(shard_to_keys):
|
||
lora_state = {}
|
||
lora_keys = []
|
||
for shard, keys in sorted(shard_to_keys.items()):
|
||
pick = [k for k in keys if (".lora_A" in k) or (".lora_B" in k) or (".lora_alpha" in k)]
|
||
if not pick: continue
|
||
part = torch.load(os.path.join(TMP_PT_DIR, shard), map_location="cpu")
|
||
for k in pick:
|
||
if k in part: lora_state[k] = part[k]
|
||
else:
|
||
# 极少数 DS 版本权重名不完全一致,容错跳过
|
||
pass
|
||
lora_keys.extend(pick)
|
||
return lora_state, lora_keys
|
||
|
||
def stream_load_full_into_model(model, shard_to_keys):
|
||
missing_total = 0
|
||
unexpected_total = 0
|
||
for shard, keys in sorted(shard_to_keys.items()):
|
||
part = torch.load(os.path.join(TMP_PT_DIR, shard), map_location="cpu")
|
||
m, u = model.load_state_dict(part, strict=False)
|
||
missing_total += len(m)
|
||
unexpected_total += len(u)
|
||
log(f"[load] missing_total={missing_total} unexpected_total={unexpected_total}")
|
||
|
||
def is_lora_A(k:str)->bool:
|
||
return k.endswith(".lora_A.weight") or k.endswith(".lora_A.default.weight")
|
||
|
||
def alpha_key_for(kA:str)->str:
|
||
if kA.endswith(".lora_A.weight"):
|
||
return kA.replace(".lora_A.weight", ".lora_alpha")
|
||
if kA.endswith(".lora_A.default.weight"):
|
||
return kA.replace(".lora_A.default.weight", ".lora_alpha.default")
|
||
return ""
|
||
|
||
log("[load] ref model from:", REF_DIR)
|
||
cfg = AutoConfig.from_pretrained(REF_DIR, trust_remote_code=True)
|
||
model = AutoModelForCausalLM.from_pretrained(
|
||
REF_DIR, config=cfg, trust_remote_code=True,
|
||
torch_dtype=torch.float32, low_cpu_mem_usage=False, device_map={"": "cpu"}
|
||
)
|
||
|
||
state = None
|
||
has_lora = False
|
||
|
||
if os.path.exists(sd_single):
|
||
log("[fp32] detected single file:", sd_single)
|
||
state = torch.load(sd_single, map_location="cpu")
|
||
# 去 'module.' 前缀
|
||
state = { (k.split("module.",1)[-1]): v for k, v in state.items() }
|
||
has_lora = any((".lora_A" in k) or (".lora_B" in k) or (".lora_alpha" in k) for k in state)
|
||
elif os.path.exists(idx_json):
|
||
log("[fp32] detected sharded weights with index:", idx_json)
|
||
weight_map, shard_to_keys = parse_index(idx_json)
|
||
has_lora = detect_lora_from_index(weight_map)
|
||
if has_lora:
|
||
log("[check] contains LoRA keys: True (stream collecting)")
|
||
lora_state, lora_keys = stream_collect_lora_from_shards(shard_to_keys)
|
||
if not lora_state:
|
||
print("ERR: 识别到 LoRA 但未筛出权重;中止。", file=sys.stderr); sys.exit(10)
|
||
# 估 r / alpha(兼容 .default)
|
||
lora_A_keys = [k for k in lora_keys if is_lora_A(k)]
|
||
if lora_A_keys:
|
||
k0 = lora_A_keys[0]
|
||
shard = next(s for s, ks in shard_to_keys.items() if k0 in ks)
|
||
part = torch.load(os.path.join(TMP_PT_DIR, shard), map_location="cpu")
|
||
r = part[k0].shape[0]
|
||
ak = alpha_key_for(k0)
|
||
a = part.get(ak)
|
||
alpha = int(a.item()) if (a is not None and hasattr(a, "item")) else int(r)
|
||
else:
|
||
r, alpha = 16, 16
|
||
|
||
adapters_dir = os.path.join(OUT_DIR, "adapters")
|
||
os.makedirs(adapters_dir, exist_ok=True)
|
||
save_file(lora_state, os.path.join(adapters_dir, "adapter_model.safetensors"))
|
||
|
||
targets = sorted(set(re.sub(r"\.lora_(A|B)(?:\.default)?\.weight$", "", k) for k in lora_A_keys))
|
||
target_modules = sorted(set(t.split(".")[-1] for t in targets)) or ["q_proj","k_proj","v_proj","o_proj","gate_proj","up_proj","down_proj"]
|
||
|
||
# ☆ 优先复用训练时的 adapter_config.json(若存在),只覆盖 base_model_name_or_path
|
||
copied_cfg = False
|
||
try:
|
||
CKPT_ROOT = os.path.abspath(os.path.join(TMP_PT_DIR, os.pardir))
|
||
src_cfg = os.path.join(CKPT_ROOT, "adapter_config.json")
|
||
if os.path.exists(src_cfg):
|
||
with open(src_cfg, "r", encoding="utf-8") as f:
|
||
adapter_cfg = json.load(f)
|
||
adapter_cfg["base_model_name_or_path"] = REF_DIR
|
||
with open(os.path.join(adapters_dir, "adapter_config.json"), "w", encoding="utf-8") as f:
|
||
json.dump(adapter_cfg, f, ensure_ascii=False, indent=2)
|
||
copied_cfg = True
|
||
except Exception:
|
||
copied_cfg = False
|
||
|
||
if not copied_cfg:
|
||
adapter_cfg = {
|
||
"peft_type": "LORA",
|
||
"base_model_name_or_path": REF_DIR,
|
||
"r": int(r),
|
||
"lora_alpha": int(alpha),
|
||
"lora_dropout": 0.05,
|
||
"bias": "none",
|
||
"task_type": "CAUSAL_LM",
|
||
"target_modules": target_modules
|
||
}
|
||
with open(os.path.join(adapters_dir, "adapter_config.json"), "w", encoding="utf-8") as f:
|
||
json.dump(adapter_cfg, f, ensure_ascii=False, indent=2)
|
||
|
||
# 复制 tokenizer/generation/config
|
||
for f in ("tokenizer_config.json","tokenizer.json","merges.txt","vocab.json","special_tokens_map.json","added_tokens.json","generation_config.json","config.json"):
|
||
src = os.path.join(REF_DIR, f)
|
||
if os.path.exists(src):
|
||
dst = os.path.join(adapters_dir, f)
|
||
if not os.path.exists(dst):
|
||
try: shutil.copy(src, dst)
|
||
except Exception: pass
|
||
|
||
log("[save] 导出了 LoRA 适配器 →", adapters_dir)
|
||
log("INFO: 可用 Transformers/vLLM/SGLang 以『REF模型 + adapters/adapter_model.safetensors』方式推理。")
|
||
sys.exit(0)
|
||
else:
|
||
log("[check] contains LoRA keys: False (stream loading into model)")
|
||
stream_load_full_into_model(model, shard_to_keys)
|
||
else:
|
||
# 无单文件也无 index.json,尝试兜底按分片名加载
|
||
shard_glob = sorted(glob.glob(os.path.join(TMP_PT_DIR, "pytorch_model-*.bin")))
|
||
if not shard_glob:
|
||
print("ERR: 未找到单文件或分片 FP32(pytorch_model.bin / .index.json / 分片)", file=sys.stderr); sys.exit(9)
|
||
log(f"[fp32] detected {len(shard_glob)} shards (no index.json), brute-load")
|
||
# 粗暴合并(可能占内存,但作为兜底)
|
||
state = {}
|
||
for sf in shard_glob:
|
||
part = torch.load(sf, map_location="cpu")
|
||
state.update(part)
|
||
state = { (k.split("module.",1)[-1]): v for k, v in state.items() }
|
||
has_lora = any((".lora_A" in k) or (".lora_B" in k) or (".lora_alpha" in k) for k in state)
|
||
|
||
if state is not None and has_lora:
|
||
log("[check] contains LoRA keys: True")
|
||
lora_state = {k: v for k, v in state.items()
|
||
if (".lora_A" in k) or (".lora_B" in k) or (".lora_alpha" in k)}
|
||
if not lora_state:
|
||
print("ERR: 识别到 LoRA 但未筛出权重;中止。", file=sys.stderr); sys.exit(10)
|
||
|
||
lora_A_keys = [k for k in lora_state if k.endswith(".lora_A.weight") or k.endswith(".lora_A.default.weight")]
|
||
if lora_A_keys:
|
||
k0 = lora_A_keys[0]
|
||
r = state[k0].shape[0]
|
||
ak = k0.replace(".lora_A.weight", ".lora_alpha").replace(".lora_A.default.weight", ".lora_alpha.default")
|
||
a = state.get(ak)
|
||
alpha = int(a.item()) if (a is not None and hasattr(a, "item")) else int(r)
|
||
else:
|
||
r, alpha = 16, 16
|
||
|
||
targets = sorted(set(re.sub(r"\.lora_(A|B)(?:\.default)?\.weight$", "", k) for k in lora_A_keys))
|
||
target_modules = sorted(set(t.split(".")[-1] for t in targets)) or ["q_proj","k_proj","v_proj","o_proj","gate_proj","up_proj","down_proj"]
|
||
|
||
adapters_dir = os.path.join(OUT_DIR, "adapters")
|
||
os.makedirs(adapters_dir, exist_ok=True)
|
||
save_file(lora_state, os.path.join(adapters_dir, "adapter_model.safetensors"))
|
||
|
||
# ☆ 优先复用训练时的 adapter_config.json(若存在),只覆盖 base_model_name_or_path
|
||
copied_cfg = False
|
||
try:
|
||
CKPT_ROOT = os.path.abspath(os.path.join(TMP_PT_DIR, os.pardir))
|
||
src_cfg = os.path.join(CKPT_ROOT, "adapter_config.json")
|
||
if os.path.exists(src_cfg):
|
||
with open(src_cfg, "r", encoding="utf-8") as f:
|
||
adapter_cfg = json.load(f)
|
||
adapter_cfg["base_model_name_or_path"] = REF_DIR
|
||
with open(os.path.join(adapters_dir, "adapter_config.json"), "w", encoding="utf-8") as f:
|
||
json.dump(adapter_cfg, f, ensure_ascii=False, indent=2)
|
||
copied_cfg = True
|
||
except Exception:
|
||
copied_cfg = False
|
||
|
||
if not copied_cfg:
|
||
adapter_cfg = {
|
||
"peft_type": "LORA",
|
||
"base_model_name_or_path": REF_DIR,
|
||
"r": int(r),
|
||
"lora_alpha": int(alpha),
|
||
"lora_dropout": 0.05,
|
||
"bias": "none",
|
||
"task_type": "CAUSAL_LM",
|
||
"target_modules": target_modules
|
||
}
|
||
with open(os.path.join(adapters_dir, "adapter_config.json"), "w", encoding="utf-8") as f:
|
||
json.dump(adapter_cfg, f, ensure_ascii=False, indent=2)
|
||
|
||
for f in ("tokenizer_config.json","tokenizer.json","merges.txt","vocab.json","special_tokens_map.json","added_tokens.json","generation_config.json","config.json"):
|
||
src = os.path.join(REF_DIR, f)
|
||
if os.path.exists(src):
|
||
dst = os.path.join(adapters_dir, f)
|
||
if not os.path.exists(dst):
|
||
try: shutil.copy(src, dst)
|
||
except Exception: pass
|
||
|
||
log("[save] 导出了 LoRA 适配器 →", adapters_dir)
|
||
log("INFO: 可用 Transformers/vLLM/SGLang 以『REF模型 + adapters/adapter_model.safetensors』方式推理。")
|
||
sys.exit(0)
|
||
|
||
# ——走到这里表示“无 LoRA”,把 FP32 权重注入模型并保存 BF16 safetensors——
|
||
if state is not None:
|
||
missing, unexpected = model.load_state_dict(state, strict=False)
|
||
log(f"[load] missing={len(missing)} unexpected={len(unexpected)}")
|
||
|
||
# untie(如需要)
|
||
try:
|
||
emb = model.get_input_embeddings().weight if hasattr(model, "get_input_embeddings") else None
|
||
head = model.lm_head.weight if hasattr(model, "lm_head") else None
|
||
if emb is not None and head is not None and emb.data_ptr() == head.data_ptr():
|
||
with torch.no_grad():
|
||
model.lm_head.weight = torch.nn.Parameter(head.detach().clone())
|
||
log("[fix] untied lm_head from embed_tokens")
|
||
except Exception as e:
|
||
log("[fix] skip untie check:", e)
|
||
|
||
model.to(dtype=torch.bfloat16)
|
||
os.makedirs(OUT_DIR, exist_ok=True)
|
||
model.save_pretrained(OUT_DIR, safe_serialization=True, max_shard_size=MAX_SHARD_SIZE)
|
||
log("[save] BF16 safetensors →", OUT_DIR)
|
||
PY
|
||
|
||
echo "== 5.1/7 拷贝(/补齐)最终目录的 tokenizer/config 工件(如存在)=="
|
||
for f in config.json generation_config.json tokenizer_config.json tokenizer.json merges.txt vocab.json special_tokens_map.json added_tokens.json; do
|
||
[[ -f "${REF_MODEL_DIR}/${f}" ]] && cp -n "${REF_MODEL_DIR}/${f}" "${OUT_DIR}/" || true
|
||
done
|
||
|
||
echo "== 6/7 自检(索引与 config)=="
|
||
python - <<'PY'
|
||
import os, json
|
||
out_dir = os.environ.get("OUT_DIR")
|
||
idx = os.path.join(out_dir, "model.safetensors.index.json")
|
||
if os.path.exists(idx):
|
||
with open(idx) as f: j = json.load(f)
|
||
print(f"OK: 找到 safetensors 索引:{idx}(参数条目 {len(j.get('weight_map', {}))})")
|
||
else:
|
||
sfts = [x for x in os.listdir(out_dir) if x.endswith(".safetensors")]
|
||
if len(sfts) == 1:
|
||
print(f"NOTE: 单分片 safetensors:{sfts[0]}")
|
||
elif len(sfts) == 0:
|
||
# LoRA 分支下可能没有模型分片(只导出 adapters)
|
||
print("NOTE: 未发现模型分片(若已导出 adapters/ 则属正常)")
|
||
else:
|
||
print("WARN: 未找到 model.safetensors.index.json,且分片数 != 1")
|
||
try:
|
||
from transformers import AutoConfig
|
||
cfg = AutoConfig.from_pretrained(out_dir, trust_remote_code=True)
|
||
print("OK: 读取到 config:", cfg.model_type, "hidden:", getattr(cfg,'hidden_size',None), "layers:", getattr(cfg,'num_hidden_layers',None))
|
||
except Exception as e:
|
||
print("NOTE: 最终目录无 config(若为纯 adapters 导出则正常):", e)
|
||
PY
|
||
|
||
echo "== 7/7 清理提示 =="
|
||
echo "临时 FP32 目录:${TMP_PT_DIR}"
|
||
echo "输出目录(无 LoRA=密集权重;有 LoRA=adapters/):${OUT_DIR}"
|
||
echo "完成。"
|