/* * Copyright (c) 2018-2020, NVIDIA CORPORATION. All rights reserved. * * NVIDIA CORPORATION and its licensors retain all intellectual property * and proprietary rights in and to this software, related documentation * and any modifications thereto. Any use, reproduction, disclosure or * distribution of this software and related documentation without an express * license agreement from NVIDIA CORPORATION is strictly prohibited. * * See COPYRIGHT.txt for license information */ #include #include #include #include #include #include "utils.h" #define UNROLL 2 __global__ void bw(double *data_d, double *remote_d, volatile unsigned int *counter_d, int len, int pe, int iter) { int u, i, j, tid, slice; unsigned int counter; int threads = gridDim.x * blockDim.x; tid = blockIdx.x * blockDim.x + threadIdx.x; slice = UNROLL * threads; for (i = 0; i < iter; i++) { for (j = 0; j < len - slice; j += slice) { for (u = 0; u < UNROLL; ++u) { int idx = j + u * threads + tid; *(remote_d + idx) = *(data_d + idx); } __syncthreads(); } for (u = 0; u < UNROLL; ++u) { int idx = j + u * threads + tid; if (idx < len) *(remote_d + idx) = *(data_d + idx); } // synchronizing across blocks __syncthreads(); if (!threadIdx.x) { __threadfence(); counter = atomicInc((unsigned int *)counter_d, UINT_MAX); if (counter == (gridDim.x * (i + 1) - 1)) { *(counter_d + 1) += 1; } while (*(counter_d + 1) != i + 1) ; } __syncthreads(); } // synchronizing across blocks __syncthreads(); if (!threadIdx.x) { __threadfence(); counter = atomicInc((unsigned int *)counter_d, UINT_MAX); if (counter == (gridDim.x * (i + 1) - 1)) { nvshmem_quiet(); *(counter_d + 1) += 1; } while (*(counter_d + 1) != i + 1) ; } } int main(int argc, char *argv[]) { int mype, npes; double *data_d = NULL, *remote_d; unsigned int *counter_d; read_args(argc, argv); int max_blocks = num_blocks, max_threads = threads_per_block; int iter = iters; int skip = warmup_iters; int array_size, i; void **h_tables; uint64_t *h_size_arr; double *h_bw; float milliseconds; cudaEvent_t start, stop; init_wrapper(&argc, &argv); cudaEventCreate(&start); cudaEventCreate(&stop); mype = nvshmem_my_pe(); npes = nvshmem_n_pes(); if (npes != 2) { fprintf(stderr, "This test requires exactly two processes \n"); goto finalize; } array_size = max_size_log; alloc_tables(&h_tables, 2, array_size); h_size_arr = (uint64_t *)h_tables[0]; h_bw = (double *)h_tables[1]; data_d = (double *)nvshmem_malloc(max_size); CUDA_CHECK(cudaMemset(data_d, 0, max_size)); remote_d = (double *)nvshmem_ptr((void *)data_d, !mype); if (remote_d == NULL) { fprintf(stderr, "peer memory not accessible for LD/ST \n"); goto finalize; } CUDA_CHECK(cudaMalloc((void **)&counter_d, sizeof(unsigned int) * 2)); CUDA_CHECK(cudaMemset(counter_d, 0, sizeof(unsigned int) * 2)); CUDA_CHECK(cudaDeviceSynchronize()); if (mype == 0) { printf("Size(Bytes) \t\t BWGB/sec\n"); fflush(stdout); } int size; i = 0; if (mype == 0) { for (size = min_size; size <= max_size; size *= step_factor) { int blocks = max_blocks, threads = max_threads; h_size_arr[i] = size; CUDA_CHECK(cudaMemset(counter_d, 0, sizeof(unsigned int) * 2)); bw<<>>(data_d, remote_d, counter_d, size / sizeof(double), mype, skip); CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaDeviceSynchronize()); CUDA_CHECK(cudaMemset(counter_d, 0, sizeof(unsigned int) * 2)); cudaEventRecord(start); bw<<>>(data_d, remote_d, counter_d, size / sizeof(double), mype, iter); cudaEventRecord(stop); CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaEventSynchronize(stop)); cudaEventElapsedTime(&milliseconds, start, stop); h_bw[i] = size / (milliseconds * (B_TO_GB / (iter * MS_TO_S))); nvshmem_barrier_all(); i++; } } else { for (size = min_size; size <= max_size; size *= step_factor) { nvshmem_barrier_all(); } } if (mype == 0) { print_table_basic("shmem_st_bw", "None", "size (Bytes)", "BW", "GB/sec", '+', h_size_arr, h_bw, i); } finalize: if (data_d) nvshmem_free(data_d); free_tables(h_tables, 2); finalize_wrapper(); return 0; }