## Run evaluation ### Evaluate sglang Host the VLM: ``` python -m sglang.launch_server --model-path Qwen/Qwen2-VL-7B-Instruct --port 30000 ``` It's recommended to reduce the memory usage by appending something like `--mem-fraction-static 0.6` to the command above. Benchmark: ``` python benchmark/mmmu/bench_sglang.py --port 30000 --concurrency 16 ``` You can adjust the `--concurrency` to control the number of concurrent OpenAI calls. You can use `--lora-path` to specify the LoRA adapter to apply during benchmarking. E.g., ``` # Launch server with LoRA enabled python -m sglang.launch_server --model-path microsoft/Phi-4-multimodal-instruct --port 30000 --trust-remote-code --disable-radix-cache --lora-paths vision= # Apply LoRA adapter during inferencing python -m benchmark/mmmu/bench_sglang.py --concurrency 8 --lora-path vision ``` ### Evaluate hf ``` python benchmark/mmmu/bench_hf.py --model-path Qwen/Qwen2-VL-7B-Instruct ```