""" Bench the sglang-hosted vLM with benchmark MMMU Usage: Host the VLM: python -m sglang.launch_server --model-path Qwen/Qwen2-VL-7B-Instruct --port 30000 Benchmark: python benchmark/mmmu/bench_sglang.py --port 30000 --concurrency 16 The eval output will be logged """ import argparse import asyncio import sys import time import traceback from dataclasses import dataclass, field from typing import Any, List, Optional, Tuple import aiohttp import openai from data_utils import save_json from eval_utils import ( EvalArgs, eval_result, get_sampling_params, prepare_samples, process_result, ) from tqdm import tqdm from sglang.test.test_utils import add_common_sglang_args_and_parse AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=20 * 60 * 60) @dataclass class RequestFuncOutput: generated_text: List[str] = field(default_factory=list) prompt_len: List[int] = field(default_factory=list) output_len: List[int] = field(default_factory=list) latency: List[float] = field(default_factory=list) ttft: List[float] = field(default_factory=list) itl: List[float] = field(default_factory=list) # List of inter-token latencies success: bool = False error: str = "" async def async_request_profile(api_url: str) -> RequestFuncOutput: async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session: output = RequestFuncOutput() try: async with session.post(url=api_url) as response: if response.status == 200: output.success = True else: output.error = response.reason or "" output.success = False except Exception: output.success = False exc_info = sys.exc_info() output.error = "".join(traceback.format_exception(*exc_info)) return output def _get_prefix_suffix(prompt: str) -> Tuple[str, str]: """Split the prompt into prefix and suffix.""" prefix = prompt.split("<")[0] suffix = prompt.split(">", 1)[1] return prefix, suffix async def process_sample( client: Any, sample: dict, sampling_params: dict, lora_path: Optional[str] = None ) -> Tuple[dict, str]: """Send a single sample to the LLM and return (sample, response).""" prompt = sample["final_input_prompt"] prefix, suffix = _get_prefix_suffix(prompt) image = sample["image"] assert image is not None image_path = sample["image_path"] extra_body = None if lora_path is None else {"lora_path": lora_path} response = await client.chat.completions.create( model="default", messages=[ { "role": "user", "content": [ {"type": "text", "text": prefix}, {"type": "image_url", "image_url": {"url": image_path}}, {"type": "text", "text": suffix}, ], } ], temperature=0, max_completion_tokens=sampling_params["max_new_tokens"], max_tokens=sampling_params["max_new_tokens"], extra_body=extra_body, ) return sample, response.choices[0].message.content async def process_sample_with_semaphore( semaphore: asyncio.Semaphore, client: Any, sample: dict, sampling_params: dict, lora_path: Optional[str] = None, ) -> Tuple[dict, str]: """Wrap process_sample with a semaphore for concurrency control.""" async with semaphore: return await process_sample(client, sample, sampling_params, lora_path) async def eval_mmmu(args) -> None: """Main evaluation loop with concurrency control.""" eval_args = EvalArgs.from_cli_args(args) sampling_params = get_sampling_params(eval_args) samples = prepare_samples(eval_args) lora_path = eval_args.lora_path answer_dict = {} out_samples = {} client = openai.AsyncOpenAI( api_key="sk", base_url=f"http://127.0.0.1:{args.port}/v1" ) semaphore = asyncio.Semaphore(args.concurrency) start = time.perf_counter() base_url = f"http://127.0.0.1:{args.port}" if args.profile: print("Starting profiler...") profile_output = await async_request_profile( api_url=f"{base_url}/start_profile" ) if profile_output.success: print("Profiler started") samples = samples[: args.profile_number] tasks = [ process_sample_with_semaphore( semaphore, client, sample, sampling_params, lora_path ) for sample in samples ] for coro in tqdm(asyncio.as_completed(tasks), total=len(tasks)): sample, response = await coro process_result(response, sample, answer_dict, out_samples) if args.profile: print("Stopping profiler...") profile_output = await async_request_profile(api_url=f"{base_url}/stop_profile") if profile_output.success: print("Profiler stopped") print(f"Benchmark time: {time.perf_counter() - start}") args.output_path = f"./val_sglang.json" save_json(args.output_path, out_samples) eval_result(model_answer_path=args.output_path, answer_dict=answer_dict) def parse_args(): parser = argparse.ArgumentParser() EvalArgs.add_cli_args(parser) args = add_common_sglang_args_and_parse(parser) return args def main(): args = parse_args() asyncio.run(eval_mmmu(args)) if __name__ == "__main__": main()