import argparse import ast import json import re import time from collections import Counter from concurrent.futures import ThreadPoolExecutor import numpy as np from tqdm import tqdm from sglang.test.test_utils import add_common_other_args_and_parse, get_call_generate from sglang.utils import dump_state_text, read_jsonl INVALID = -9999999 def get_answer_value(answer_str): answer_str = answer_str.replace(",", "") numbers = re.findall(r"\d+", answer_str) if len(numbers) < 1: return INVALID try: return ast.literal_eval(numbers[-1]) except SyntaxError: return INVALID def most_frequent_number(numbers): if not numbers: return None frequency = Counter(numbers) most_frequent = max(frequency, key=frequency.get) return most_frequent USER_PREFIX = "[INST] " USER_SUFFIX = " [/INST]" ASSISTANT_PREFIX = "" ASSISTANT_SUFFIX = " " # Use a low temp to make the results more deterministic and the comparison more fair. temp = 0.3 def propose_plan(s, question, num_branches, call_generate): s += ( USER_PREFIX + """Please generate a high-level plan for solving the following question. As the first step, just say what method and idea you will use to solve the question. You can reorganize the information in the question. Do not do the actual calculation. Keep your response concise and within 80 words. Question: """ + question + USER_SUFFIX ) s += ASSISTANT_PREFIX comps = call_generate( s, max_tokens=256, temperature=temp, stop=None, n=num_branches ) return [s + comp + ASSISTANT_SUFFIX for comp in comps] def execute_plan(s, num_branches, call_generate): s += ( USER_PREFIX + """The plan looks good! Now, use real numbers and do the calculation. Please solve the question step-by-step according to the high-level plan. Give me the final answer. Make your response short.""" + USER_SUFFIX ) s += ASSISTANT_PREFIX comps = call_generate( s, max_tokens=256, temperature=temp, stop=None, n=num_branches ) return [s + comp + ASSISTANT_SUFFIX for comp in comps] def reflect_solution(s, num_branches, call_generate): s += ( USER_PREFIX + """Okay. Now you evaluate your own solution and give it a score on a scale of 1 to 5. Please do rigorous check of the correctness.""" + USER_SUFFIX ) s += ASSISTANT_PREFIX comps = call_generate( s, max_tokens=256, temperature=temp, stop=None, n=num_branches ) return [s + comp + ASSISTANT_SUFFIX for comp in comps] def tree_search(question, num_branches, call_generate): s = "" solutions = [] plan_forks = propose_plan(s, question, num_branches, call_generate) for plan in plan_forks: sol_forks = execute_plan(plan, num_branches, call_generate) for sol in sol_forks: score_forks = reflect_solution(sol, num_branches, call_generate) solutions.append(sol_forks) return solutions def main(args): lines = read_jsonl(args.data_path) # Construct prompts num_branches = 3 questions = [] labels = [] for i in range(len(lines[: args.num_questions])): questions.append(lines[i]["question"]) labels.append(get_answer_value(lines[i]["answer"])) assert all(l != INVALID for l in labels) arguments = [{"question": q, "num_branches": num_branches} for q in questions] # Select backend call_generate = get_call_generate(args) # Run requests states = [None] * len(questions) def get_one_answer(i): states[i] = tree_search(**arguments[i], call_generate=call_generate) tic = time.perf_counter() if args.parallel == 1: for i in tqdm(range(len(questions))): get_one_answer(i) else: with ThreadPoolExecutor(args.parallel) as executor: list( tqdm( executor.map(get_one_answer, list(range(len(questions)))), total=len(questions), ) ) latency = time.perf_counter() - tic answers_text = [] for s in states: answers_text.append([x for xs in s for x in xs]) preds = [] for i in range(len(states)): answers = [get_answer_value(v) for v in answers_text[i]] preds.append(most_frequent_number(answers)) # Compute accuracy acc = np.mean(np.array(preds) == np.array(labels)) invalid = np.mean(np.array(preds) == INVALID) print(f"Latency: {latency:.3f}") print(f"Invalid: {invalid:.3f}") print(f"Accuracy: {acc:.3f}") # Write results dump_state_text(f"tmp_output_{args.backend}.txt", answers_text) with open(args.result_file, "a") as fout: value = { "task": "tree_of_thought_gsm8k", "backend": args.backend, "num_gpus": 1, "latency": round(latency, 3), "accuracy": round(acc, 3), "num_requests": args.num_questions, "other": { "num_questions": args.num_questions, "parallel": args.parallel, }, } fout.write(json.dumps(value) + "\n") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--data-path", type=str, default="test.jsonl") parser.add_argument("--num-questions", type=int, default=200) args = add_common_other_args_and_parse(parser) main(args)