# Rerank Models SGLang offers comprehensive support for rerank models by incorporating optimized serving frameworks with a flexible programming interface. This setup enables efficient processing of cross-encoder reranking tasks, improving the accuracy and relevance of search result ordering. SGLang’s design ensures high throughput and low latency during reranker model deployment, making it ideal for semantic-based result refinement in large-scale retrieval systems. ```{important} They are executed with `--is-embedding` and some may require `--trust-remote-code` ``` ## Example Launch Command ```shell python3 -m sglang.launch_server \ --model-path BAAI/bge-reranker-v2-m3 \ --host 0.0.0.0 \ --disable-radix-cache \ --chunked-prefill-size -1 \ --attention-backend triton \ --is-embedding \ --port 30000 ``` ## Example Client Request ```python import requests url = "http://127.0.0.1:30000/v1/rerank" payload = { "model": "BAAI/bge-reranker-v2-m3", "query": "what is panda?", "documents": [ "hi", "The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China." ] } response = requests.post(url, json=payload) response_json = response.json() for item in response_json: print(f"Score: {item['score']:.2f} - Document: '{item['document']}'") ``` ## Supported rerank models | Model Family (Rerank) | Example HuggingFace Identifier | Chat Template | Description | |------------------------------------------------|--------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------| | **BGE-Reranker (BgeRerankModel)** | `BAAI/bge-reranker-v2-m3` | N/A | Currently only support `attention-backend` `triton` and `torch_native`. high-performance cross-encoder reranker model from BAAI. Suitable for reranking search results based on semantic relevance. |