import argparse import copy import itertools import torch import triton from sgl_kernel import fp8_scaled_mm as sgl_scaled_mm from vllm._custom_ops import cutlass_scaled_mm as vllm_scaled_mm from vllm._custom_ops import scaled_fp8_quant as vllm_scaled_fp8_quant # Weight Shapes are in the format # ([K, N], TP_SPLIT_DIM) # Example: # A shape of ([14336, 4096], 0) indicates the following GEMM shape, # - TP1 : K = 14336, N = 4096 # - TP2 : K = 7168, N = 4096 # A shape of ([4096, 6144], 1) indicates the following GEMM shape, # - TP1 : K = 4096, N = 6144 # - TP4 : K = 4096, N = 1536 # TP1 shapes WEIGHT_SHAPES = { "meta-llama/Llama-3.1-8B-Instruct": [ ([4096, 6144], 1), ([4096, 4096], 0), ([4096, 28672], 1), ([14336, 4096], 0), ], "meta-llama/Llama-3.3-70B-Instruct": [ ([8192, 10240], 1), ([8192, 8192], 0), ([8192, 57344], 1), ([28672, 8192], 0), ], "mistralai/Mistral-Large-Instruct-2407": [ ([12288, 14336], 1), ([12288, 12288], 0), ([12288, 57344], 1), ([28672, 12288], 0), ], "Qwen/Qwen2.5-7B-Instruct": [ ([3584, 4608], 1), ([3584, 3584], 0), ([3584, 37888], 1), ([18944, 3584], 0), ], "Qwen/Qwen2.5-32B-Instruct": [ ([5120, 7168], 1), ([5120, 5120], 0), ([5120, 55296], 1), ([27648, 5120], 0), ], "Qwen/Qwen2.5-72B-Instruct": [ ([8192, 10240], 1), ([8192, 8192], 0), ([8192, 59136], 1), ([29568, 8192], 0), ], "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct": [ ([2048, 3072], 1), ([2048, 4096], 1), ([2048, 2048], 0), ([2048, 576], 0), ([2048, 21888], 1), ([10944, 2048], 0), ([2048, 2816], 1), ([1408, 2048], 0), ], } @triton.testing.perf_report( triton.testing.Benchmark( x_names=["batch_size"], x_vals=[1, 16, 64, 128, 256, 512, 1024, 2048], x_log=False, line_arg="provider", line_vals=[ "vllm-fp8-fp16", "vllm-fp8-bf16", "sglang-fp8-fp16", "sglang-fp8-bf16", ], line_names=[ "vllm-fp8-fp16", "vllm-fp8-bf16", "sglang-fp8-fp16", "sglang-fp8-bf16", ], styles=[("green", "-"), ("green", "--"), ("blue", "-"), ("blue", "--")], ylabel="GB/s", plot_name="fp8 scaled matmul", args={}, ) ) def benchmark(batch_size, provider, N, K): # M, N, K = batch_size, 4096, 8192 M = batch_size a = torch.ones((M, K), device="cuda") * 5.0 b = torch.ones((N, K), device="cuda") * 5.0 scale_a = torch.randn((M,), device="cuda", dtype=torch.float32) scale_b = torch.randn((N,), device="cuda", dtype=torch.float32) a_fp8, scale_a_fp8 = vllm_scaled_fp8_quant(a, scale_a) b_fp8, scale_b_fp8 = vllm_scaled_fp8_quant(b, scale_b) b_fp8 = b_fp8.t() quantiles = [0.5, 0.2, 0.8] dtype = torch.float16 if "fp16" in provider else torch.bfloat16 if "vllm-fp8" in provider: ms, min_ms, max_ms = triton.testing.do_bench( lambda: vllm_scaled_mm(a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype), quantiles=quantiles, ) elif "sglang-fp8" in provider: ms, min_ms, max_ms = triton.testing.do_bench( lambda: sgl_scaled_mm( a_fp8, b_fp8, scale_a_fp8, scale_b_fp8, dtype, bias=None ), quantiles=quantiles, ) gbps = lambda ms: (2 * M * N * K + M * N) * a.element_size() * 1e-9 / (ms * 1e-3) return gbps(ms), gbps(max_ms), gbps(min_ms) def prepare_shapes(args): KN_model_names = [] models_tps = list(itertools.product(args.models, args.tp_sizes)) for model, tp_size in models_tps: assert model in WEIGHT_SHAPES for KN, tp_split_dim in copy.deepcopy(WEIGHT_SHAPES[model]): KN[tp_split_dim] = KN[tp_split_dim] // tp_size KN.append(model) KN_model_names.append(KN) return KN_model_names if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--models", nargs="+", type=str, default=["meta-llama/Llama-3.1-8B-Instruct"], help="List of models to benchmark", ) parser.add_argument( "--tp-sizes", nargs="+", type=int, default=[1], help="List of tensor parallel sizes", ) args = parser.parse_args() KN_model_names = prepare_shapes(args) for K, N, model_name in KN_model_names: print(f"{model_name} N={N} K={K}: ") benchmark.run( print_data=True, show_plots=True, save_path="bench_fp8_res", N=N, K=K ) print("Benchmark finished!")