#include "common.h" #include "vec.h" namespace { template void rotary_embedding_3D_kernel_impl( scalar_t* __restrict__ query_out, scalar_t* __restrict__ key_out, int64_t* __restrict__ positions, scalar_t* __restrict__ query, scalar_t* __restrict__ key, scalar_t* __restrict__ cos_sin_cache, int64_t num_tokens, int64_t num_heads, int64_t num_kv_heads, int64_t head_size, int64_t rotary_dim, int64_t query_stride_s, int64_t query_out_stride_s, int64_t key_out_stride_s, int64_t key_stride_s, int64_t query_stride_h, int64_t query_out_stride_h) { int64_t HR = rotary_dim; int64_t HK = rotary_dim; int64_t COFF = HR / 2; at::parallel_for(0, num_tokens * num_heads, GRAIN_SIZE / rotary_dim, [&](int64_t begin, int64_t end) { int64_t seq{0}, head_id{0}; data_index_init(begin, seq, num_tokens, head_id, num_heads); for (int64_t i = begin; i < end; ++i) { int64_t in_offset_q = seq * query_stride_s + head_id * query_stride_h; int64_t out_offset_q = seq * query_out_stride_s + head_id * query_out_stride_h; int64_t out_offset_k = seq * key_out_stride_s; int64_t p = 0; scalar_t* sin_start = nullptr; scalar_t* cos_start = nullptr; // step 0) get the rotary position embedding for the current position p = positions[seq]; sin_start = cos_sin_cache + p * HR + COFF; cos_start = cos_sin_cache + p * HR; // step 1) apply_rotary_pos_emb for the rotary_dim elements in every // head of query/key for (int64_t h = 0; h < rotary_dim; h += 2) { scalar_t cos = cos_start[h >> 1]; scalar_t sin = sin_start[h >> 1]; scalar_t in1 = query[in_offset_q + h]; scalar_t in2 = query[in_offset_q + h + 1]; scalar_t out1 = in1 * cos - in2 * sin; scalar_t out2 = in2 * cos + in1 * sin; query_out[out_offset_q + h] = out1; query_out[out_offset_q + h + 1] = out2; } for (int64_t h = 0; h < HK; h += 2) { scalar_t cos = cos_start[h >> 1]; scalar_t sin = sin_start[h >> 1]; int64_t k_pe_offset = seq * key_stride_s; scalar_t in1_k = key[k_pe_offset + h]; scalar_t in2_k = key[k_pe_offset + h + 1]; scalar_t out1_k = in1_k * cos - in2_k * sin; scalar_t out2_k = in2_k * cos + in1_k * sin; key_out[out_offset_k + h] = out1_k; key_out[out_offset_k + h + 1] = out2_k; } // move to the next index data_index_step(seq, num_tokens, head_id, num_heads); } }); } template void rotary_embedding_neox_2D_kernel_impl( int64_t* __restrict__ positions, scalar_t* __restrict__ query, scalar_t* __restrict__ key, scalar_t* __restrict__ cos_sin_cache, int64_t rotary_dim, int64_t query_stride_s, int64_t key_stride_s, int64_t num_heads, int64_t num_kv_heads, int64_t head_size, int64_t num_tokens) { using bVec = at::vec::Vectorized; using fVec = at::vec::Vectorized; constexpr int64_t bVecSize = bVec::size(); int64_t embed_dim = rotary_dim / 2; bool flag = (embed_dim % bVecSize == 0); int64_t loop_upper = flag ? embed_dim : embed_dim - bVecSize; auto compute_loop = [&](int64_t token_head, scalar_t* cache_ptr, scalar_t* qk) { int64_t j = 0; for (; j < loop_upper; j += bVecSize) { int64_t rot_offset = j; int64_t x_index = rot_offset; int64_t y_index = embed_dim + rot_offset; int64_t out_x = token_head + x_index; int64_t out_y = token_head + y_index; bVec _cos = bVec::loadu(cache_ptr + x_index); bVec _sin = bVec::loadu(cache_ptr + y_index); bVec _q_x = bVec::loadu(qk + out_x); bVec _q_y = bVec::loadu(qk + out_y); fVec _cos_0, _cos_1; std::tie(_cos_0, _cos_1) = at::vec::convert_to_float(_cos); fVec _sin_0, _sin_1; std::tie(_sin_0, _sin_1) = at::vec::convert_to_float(_sin); fVec _q_x_0, _q_x_1; std::tie(_q_x_0, _q_x_1) = at::vec::convert_to_float(_q_x); fVec _q_y_0, _q_y_1; std::tie(_q_y_0, _q_y_1) = at::vec::convert_to_float(_q_y); auto out1_0 = _q_x_0 * _cos_0 - _q_y_0 * _sin_0; auto out1_1 = _q_x_1 * _cos_1 - _q_y_1 * _sin_1; auto out1 = convert_from_float_ext(out1_0, out1_1); out1.store(qk + out_x); auto out2_0 = _q_y_0 * _cos_0 + _q_x_0 * _sin_0; auto out2_1 = _q_y_1 * _cos_1 + _q_x_1 * _sin_1; auto out2 = convert_from_float_ext(out2_0, out2_1); out2.store(qk + out_y); } if (!flag) { for (; j < embed_dim; ++j) { int64_t x_index = j; int64_t y_index = embed_dim + j; int64_t out_x = token_head + x_index; int64_t out_y = token_head + y_index; float _cos = cache_ptr[x_index]; float _sin = cache_ptr[y_index]; float _q_x = qk[out_x]; float _q_y = qk[out_y]; qk[out_x] = _q_x * _cos - _q_y * _sin; qk[out_y] = _q_y * _cos + _q_x * _sin; } } }; #pragma omp parallel for for (int64_t token_idx = 0; token_idx < num_tokens; ++token_idx) { int64_t pos = positions[token_idx]; scalar_t* cache_ptr = cos_sin_cache + pos * rotary_dim; for (int64_t i = 0; i < num_heads; ++i) { int64_t head_idx = i; int64_t token_head = token_idx * query_stride_s + head_idx * head_size; compute_loop(token_head, cache_ptr, query); } for (int64_t i = 0; i < num_kv_heads; ++i) { int64_t head_idx = i; int64_t token_head = token_idx * key_stride_s + head_idx * head_size; compute_loop(token_head, cache_ptr, key); } } } template void rotary_embedding_2D_kernel_impl( int64_t* __restrict__ positions, scalar_t* __restrict__ query, scalar_t* __restrict__ key, scalar_t* __restrict__ cos_sin_cache, int64_t rotary_dim, int64_t query_stride_s, int64_t key_stride_s, int64_t num_heads, int64_t num_kv_heads, int64_t head_size, int64_t num_tokens) { int64_t embed_dim = rotary_dim / 2; at::parallel_for(0, num_tokens * num_heads, GRAIN_SIZE / rotary_dim, [&](int64_t begin, int64_t end) { int64_t token_idx = {0}, i = {0}; data_index_init(begin, token_idx, num_tokens, i, num_heads); for ([[maybe_unused]] auto z : c10::irange(begin, end)) { int64_t pos = positions[token_idx]; scalar_t* cache_ptr = cos_sin_cache + pos * rotary_dim; scalar_t* cos_cache_ptr = cache_ptr; scalar_t* sin_cache_ptr = cache_ptr + embed_dim; int64_t head_idx = i; int64_t token_head = token_idx * query_stride_s + head_idx * head_size; scalar_t* head_query = token_head + query; for (int64_t j = 0; j < embed_dim; j += 1) { int64_t rot_offset = j; int64_t x_index = 2 * rot_offset; int64_t y_index = 2 * rot_offset + 1; float cos = cos_cache_ptr[rot_offset]; float sin = sin_cache_ptr[rot_offset]; float x = head_query[x_index]; float y = head_query[y_index]; head_query[x_index] = x * cos - y * sin; head_query[y_index] = y * cos + x * sin; } data_index_step(token_idx, num_tokens, i, num_heads); } }); at::parallel_for(0, num_tokens * num_kv_heads, GRAIN_SIZE / rotary_dim, [&](int64_t begin, int64_t end) { int64_t token_idx{0}, i = {0}; data_index_init(begin, token_idx, num_tokens, i, num_kv_heads); for ([[maybe_unused]] auto z : c10::irange(begin, end)) { int64_t pos = positions[token_idx]; scalar_t* cache_ptr = cos_sin_cache + pos * rotary_dim; scalar_t* cos_cache_ptr = cache_ptr; scalar_t* sin_cache_ptr = cache_ptr + embed_dim; int64_t head_idx = i; int64_t token_head = token_idx * key_stride_s + head_idx * head_size; scalar_t* head_key = key + token_head; for (int64_t j = 0; j < embed_dim; j += 1) { int64_t rot_offset = j; int64_t x_index = 2 * rot_offset; int64_t y_index = 2 * rot_offset + 1; float cos = cos_cache_ptr[rot_offset]; float sin = sin_cache_ptr[rot_offset]; float x = head_key[x_index]; float y = head_key[y_index]; head_key[x_index] = x * cos - y * sin; head_key[y_index] = y * cos + x * sin; } data_index_step(token_idx, num_tokens, i, num_kv_heads); } }); } } // namespace std::tuple rotary_embedding_cpu( at::Tensor& positions, at::Tensor& query, at::Tensor& key, int64_t head_size, at::Tensor& cos_sin_cache, bool is_neox) { RECORD_FUNCTION("sgl-kernel::rotary_embedding_cpu", std::vector({query, key})); CHECK_DIM(1, positions); const auto input_dim = query.dim(); const auto input_dtype = query.scalar_type(); TORCH_CHECK( input_dim == 2 || input_dim == 3, " Query/Key must be 2D [num_tokens, num_heads*head_size] or 3D [num_tokens, num_heads, head_size] tensor"); CHECK_DIM(2, cos_sin_cache); CHECK_LAST_DIM_CONTIGUOUS_INPUT(query); CHECK_LAST_DIM_CONTIGUOUS_INPUT(key); int64_t rotary_dim = cos_sin_cache.size(1); if (input_dim == 3) { // TODO: add support for head_dim != rotary_dim case when input_dim=3 CHECK_EQ(query.size(-1), rotary_dim); // TODO: add support for kv_head != 1 CHECK_EQ(key.size(1), 1); } int64_t num_tokens = positions.numel(); CHECK_EQ(key.size(0), num_tokens); CHECK_EQ(query.size(0), num_tokens); TORCH_CHECK(positions.scalar_type() == at::kLong, "expect positions to be int64, got ", positions.scalar_type()); TORCH_CHECK(input_dtype == key.scalar_type(), "query and key must have the same data type"); TORCH_CHECK(input_dtype == cos_sin_cache.scalar_type(), "query and cos_sin_cache must have the same data type"); int64_t num_heads = input_dim == 2 ? query.size(-1) / head_size : query.size(1); int64_t num_kv_heads = input_dim == 2 ? key.size(-1) / head_size : key.size(1); int64_t key_stride_s = key.stride(0); int64_t query_stride_s = query.stride(0); // input stride of num head dim is meaningful only when input dim = 3 int64_t query_stride_h = input_dim == 3 ? query.stride(1) : -1; at::Tensor query_out = at::empty_like(query); at::Tensor key_out = at::empty_like(key); int64_t query_out_stride_s = query_out.stride(0); int64_t key_out_stride_s = key_out.stride(0); // output stride of num head dim is meaningful only when input dim = 3 int64_t query_out_stride_h = input_dim == 3 ? query_out.stride(1) : -1; AT_DISPATCH_REDUCED_FLOATING_TYPES(input_dtype, "rotary_embedding_cpu", [&] { if (input_dim == 2) { if (is_neox) { rotary_embedding_neox_2D_kernel_impl( positions.data_ptr(), query.data_ptr(), key.data_ptr(), cos_sin_cache.data_ptr(), rotary_dim, query_stride_s, key_stride_s, num_heads, num_kv_heads, head_size, num_tokens); } else { rotary_embedding_2D_kernel_impl( positions.data_ptr(), query.data_ptr(), key.data_ptr(), cos_sin_cache.data_ptr(), rotary_dim, query_stride_s, key_stride_s, num_heads, num_kv_heads, head_size, num_tokens); } query_out = query; key_out = key; } else { TORCH_CHECK( is_neox == false, " Query/Key with 3D [num_tokens, num_heads, head_size] does not support neox rope yet"); // TODO: add neox style support for rope impl with 3D inputs rotary_embedding_3D_kernel_impl( query_out.data_ptr(), key_out.data_ptr(), positions.data_ptr(), query.data_ptr(), key.data_ptr(), cos_sin_cache.data_ptr(), num_tokens, num_heads, num_kv_heads, head_size, rotary_dim, query_stride_s, query_out_stride_s, key_out_stride_s, key_stride_s, query_stride_h, query_out_stride_h); } }); return std::make_tuple(query_out, key_out); }