/* Copyright 2025 SGLang Team. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include #include #include #include "sgl_kernel_ops.h" #include "shm.h" // silu_and_mul at::Tensor silu_and_mul_cpu(at::Tensor& input); // l2norm at::Tensor l2norm_cpu(at::Tensor& input, double eps); // rmsnorm at::Tensor rmsnorm_cpu(at::Tensor& input, at::Tensor& weight, double eps); // fused_add_rmsnorm void fused_add_rmsnorm_cpu(at::Tensor& input, at::Tensor& residual, at::Tensor& weight, double eps); // topk std::tuple topk_sigmoid_cpu(at::Tensor& hidden_states, at::Tensor& gating_output, int64_t topk, bool renormalize); std::tuple topk_softmax_cpu(at::Tensor& hidden_states, at::Tensor& gating_output, int64_t topk, bool renormalize); std::tuple grouped_topk_cpu( at::Tensor& hidden_states, at::Tensor& gating_output, int64_t topk, bool renormalize, int64_t num_expert_group, int64_t topk_group, int64_t num_fused_shared_experts, std::optional routed_scaling_factor, std::optional num_token_non_padded); std::tuple biased_grouped_topk_cpu( at::Tensor& hidden_states, at::Tensor& gating_output, at::Tensor& correction_bias, int64_t topk, bool renormalize, int64_t num_expert_group, int64_t topk_group, int64_t num_fused_shared_experts, std::optional routed_scaling_factor, std::optional num_token_non_padded); // attention void decode_attention_cpu( at::Tensor& query, at::Tensor& k_cache, at::Tensor& v_cache, at::Tensor& output, at::Tensor& key, at::Tensor& value, at::Tensor& loc, at::Tensor& attn_logits, at::Tensor& req_to_token, at::Tensor& req_pool_indices, at::Tensor& seq_lens, double sm_scale, double logit_cap); void extend_attention_cpu( at::Tensor& q_extend, at::Tensor& k_extend, at::Tensor& v_extend, at::Tensor& o_extend, at::Tensor& k_buffer, at::Tensor& v_buffer, at::Tensor& req_to_token, at::Tensor& req_pool_indices, at::Tensor& seq_lens, at::Tensor& extend_seq_lens, at::Tensor& extend_start_loc, int64_t max_len_extend, double sm_scale, double logit_cap); // weight prepack at::Tensor convert_weight_packed(at::Tensor& weight); // quant std::tuple per_token_quant_int8_cpu(at::Tensor& A); // gemm at::Tensor weight_packed_linear(at::Tensor& mat1, at::Tensor& mat2, const std::optional& bias, bool is_vnni); // igemm at::Tensor int8_scaled_mm_cpu( at::Tensor& mat1, at::Tensor& mat2, at::Tensor& scales1, at::Tensor& scales2, const std::optional& bias, at::ScalarType out_dtype, bool is_vnni); // fp8 gemm at::Tensor fp8_scaled_mm_cpu( at::Tensor& mat1, at::Tensor& mat2, at::Tensor& scales2, std::vector block_size, const std::optional& bias, at::ScalarType out_dtype, bool is_vnni); // quant + igemm at::Tensor int8_scaled_mm_with_quant( at::Tensor& mat1, at::Tensor& mat2, at::Tensor& scales2, const std::optional& bias, at::ScalarType out_dtype, bool is_vnni); // bmm void bmm_cpu(at::Tensor& out, at::Tensor& mat1, at::Tensor& mat2, bool is_vnni, const std::optional& scale); // fused moe at::Tensor fused_experts_cpu( at::Tensor& hidden_states, at::Tensor& w1, at::Tensor& w2, at::Tensor& topk_weights, at::Tensor& topk_ids, bool inplace, bool use_int8_w8a8, bool use_fp8_w8a16, const std::optional& w1_scale, const std::optional& w2_scale, const std::optional> block_size, const std::optional& a1_scale, const std::optional& a2_scale, bool is_vnni); at::Tensor shared_expert_cpu( at::Tensor& hidden_states, at::Tensor& w1, at::Tensor& w2, at::Tensor& fused_experts_out, double routed_scaling_factor, bool inplace, bool use_int8_w8a8, bool use_fp8_w8a16, const std::optional& w1_scale, const std::optional& w2_scale, const std::optional> block_size, const std::optional& a1_scale, const std::optional& a2_scale, bool is_vnni); // weight absorption std::tuple qkv_proj_with_rope( at::Tensor& hidden_states, at::Tensor& q_a_proj_weight, at::Tensor& q_b_proj_weight, at::Tensor& kv_a_proj_weight, at::Tensor& w_kc, at::Tensor& q_a_layernorm_weight, at::Tensor& kv_a_layernorm_weight, at::Tensor& positions, at::Tensor& cos_sin_cache, double eps, bool use_int8_w8a8, bool use_fp8_w8a16, std::optional q_a_proj_scale, std::optional q_b_proj_scale, std::optional kv_a_proj_scale, bool is_vnni, std::optional> block_size); std::tuple qkv_proj_with_rope_fused_weight( at::Tensor& hidden_states, at::Tensor& qkv_a_proj_weight, at::Tensor& q_b_proj_weight, at::Tensor& w_kc, at::Tensor& q_a_layernorm_weight, at::Tensor& kv_a_layernorm_weight, at::Tensor& positions, at::Tensor& cos_sin_cache, double eps, bool use_int8_w8a8, bool use_fp8_w8a16, std::optional qkv_a_proj_scale, std::optional q_b_proj_scale, bool is_vnni, std::optional> block_size, int64_t q_lora_rank, int64_t kv_lora_rank, int64_t qk_rope_head_dim); // shared memory init void initialize(int64_t size, int64_t rank); // shared mmeory all_reduce void shm_allreduce( at::Tensor& data, c10::intrusive_ptr process_group, c10::intrusive_ptr op); // shared memory all_gather at::Tensor shm_allgather(at::Tensor& data, c10::intrusive_ptr process_group, int64_t dim); // rope std::tuple rotary_embedding_cpu( at::Tensor& positions, at::Tensor& query, at::Tensor& key, int64_t head_size, at::Tensor& cos_sin_cache, bool is_neox); TORCH_LIBRARY_FRAGMENT(sgl_kernel, m) { // activation m.def("silu_and_mul_cpu(Tensor input) -> Tensor"); m.impl("silu_and_mul_cpu", torch::kCPU, &silu_and_mul_cpu); // norm m.def("rmsnorm_cpu(Tensor input, Tensor weight, float eps) -> Tensor"); m.impl("rmsnorm_cpu", torch::kCPU, &rmsnorm_cpu); m.def("l2norm_cpu(Tensor input, float eps) -> Tensor"); m.impl("l2norm_cpu", torch::kCPU, &l2norm_cpu); m.def("fused_add_rmsnorm_cpu(Tensor input, Tensor residual, Tensor weight, float eps) -> ()"); m.impl("fused_add_rmsnorm_cpu", torch::kCPU, &fused_add_rmsnorm_cpu); // topk m.def("topk_sigmoid_cpu(Tensor hidden_states, Tensor gating_output, int topk, bool renormalize) -> (Tensor, Tensor)"); m.impl("topk_sigmoid_cpu", torch::kCPU, &topk_sigmoid_cpu); m.def("topk_softmax_cpu(Tensor hidden_states, Tensor gating_output, int topk, bool renormalize) -> (Tensor, Tensor)"); m.impl("topk_softmax_cpu", torch::kCPU, &topk_softmax_cpu); m.def( "grouped_topk_cpu(Tensor hidden_states, Tensor gating_output, int topk, bool renormalize, int num_expert_group, " "int topk_group, int num_fused_shared_experts, float? routed_scaling_factor, Tensor? num_token_non_padded) -> " "(Tensor, Tensor)"); m.impl("grouped_topk_cpu", torch::kCPU, &grouped_topk_cpu); // biased group topk m.def( "biased_grouped_topk_cpu(Tensor hidden_states, Tensor gating_output, Tensor correction_bias, int topk, bool " "renormalize, int num_expert_group, int topk_group, int num_fused_shared_experts, float? routed_scaling_factor, " "Tensor? num_token_non_padded) -> (Tensor, Tensor)"); m.impl("biased_grouped_topk_cpu", torch::kCPU, &biased_grouped_topk_cpu); // decode m.def( "decode_attention_cpu(Tensor query, Tensor k_cache, Tensor v_cahce, Tensor output, Tensor key, Tensor value, " "Tensor loc, Tensor attn_logits, Tensor req_to_token, Tensor req_pool_indices, Tensor seq_lens, float sm_scale, " "float logit_cap) -> ()"); m.impl("decode_attention_cpu", torch::kCPU, &decode_attention_cpu); // extend m.def( "extend_attention_cpu(Tensor q_extend, Tensor k_extend, Tensor v_extend, Tensor o_extend, Tensor k_buffer, " "Tensor v_buffer, Tensor req_to_token, Tensor req_pool_indices, Tensor seq_lens, Tensor extend_seq_lens, Tensor " "extend_start_loc, int max_len_extend, float sm_scale, float logit_cap) -> ()"); m.impl("extend_attention_cpu", torch::kCPU, &extend_attention_cpu); // weight prepack m.def("convert_weight_packed(Tensor weight) -> Tensor"); m.impl("convert_weight_packed", torch::kCPU, &convert_weight_packed); // quant m.def("per_token_quant_int8_cpu(Tensor A) -> (Tensor, Tensor)"); m.impl("per_token_quant_int8_cpu", torch::kCPU, &per_token_quant_int8_cpu); // gemm m.def("weight_packed_linear(Tensor mat1, Tensor mat2, Tensor? bias, bool is_vnni) -> Tensor"); m.impl("weight_packed_linear", torch::kCPU, &weight_packed_linear); // igemm m.def( "int8_scaled_mm_cpu(Tensor mat1, Tensor mat2, Tensor scales1, Tensor scales2, Tensor? bias, ScalarType " "out_dtype, bool is_vnni) -> Tensor"); m.impl("int8_scaled_mm_cpu", torch::kCPU, &int8_scaled_mm_cpu); // fp8 gemm m.def( "fp8_scaled_mm_cpu(Tensor mat1, Tensor mat2, Tensor scales2, int[] block_size, Tensor? bias, ScalarType " "out_dtype, bool is_vnni) -> Tensor"); m.impl("fp8_scaled_mm_cpu", torch::kCPU, &fp8_scaled_mm_cpu); // quant + igemm m.def( "int8_scaled_mm_with_quant(Tensor mat1, Tensor mat2, Tensor scales2, Tensor? bias, ScalarType out_dtype, bool " "is_vnni) -> Tensor"); m.impl("int8_scaled_mm_with_quant", torch::kCPU, &int8_scaled_mm_with_quant); // bmm m.def("bmm_cpu(Tensor out, Tensor mat1, Tensor mat2, bool is_vnni, Tensor? scale) -> ()"); m.impl("bmm_cpu", torch::kCPU, &bmm_cpu); // moe m.def( "fused_experts_cpu(Tensor hidden_states, Tensor w1, Tensor w2, Tensor topk_weights, Tensor topk_ids, bool " "inplace, bool use_int8_w8a8, bool use_fp8_w8a16, Tensor? w1_scale, Tensor? w2_scale, int[]? block_size, Tensor? " "a1_scale, Tensor? a2_scale, bool " "is_vnni) -> Tensor"); m.impl("fused_experts_cpu", torch::kCPU, &fused_experts_cpu); // weight absorption m.def( "qkv_proj_with_rope(Tensor hidden_states, Tensor q_a_proj_weight, Tensor q_b_proj_weight, Tensor " "kv_a_proj_weight, Tensor w_kc, Tensor q_a_layernorm_weight, Tensor kv_a_layernorm_weight, Tensor positions, " "Tensor cos_sin_cache, float eps, bool use_int8_w8a8, bool use_fp8_w8a16, Tensor? q_a_proj_scale, Tensor? " "q_b_proj_scale, Tensor? " "kv_a_proj_scale, bool is_vnni, int[]? block_size) -> (Tensor, Tensor, Tensor)"); m.impl("qkv_proj_with_rope", torch::kCPU, &qkv_proj_with_rope); m.def( "qkv_proj_with_rope_fused_weight(Tensor hidden_states, Tensor qkv_a_proj_weight, Tensor q_b_proj_weight, " "Tensor w_kc, Tensor q_a_layernorm_weight, Tensor kv_a_layernorm_weight, Tensor positions, " "Tensor cos_sin_cache, float eps, bool use_int8_w8a8, bool use_fp8_w8a16, Tensor? qkv_a_proj_scale, Tensor? " "q_b_proj_scale," "bool is_vnni, int[]? block_size, int q_lora_rank, int kv_lora_rank," "int qk_rope_head_dim) -> (Tensor, Tensor, Tensor)"); m.impl("qkv_proj_with_rope_fused_weight", torch::kCPU, &qkv_proj_with_rope_fused_weight); // shared expert m.def( "shared_expert_cpu(Tensor hidden_states, Tensor w1, Tensor w2, Tensor fused_experts_out, float " "routed_scaling_factor, bool inplace, bool use_int8_w8a8, bool use_fp8_w8a16, Tensor? w1_scale, Tensor? " "w2_scale, int[]? block_size, Tensor? a1_scale, Tensor? a2_scale, bool is_vnni) -> Tensor"); m.impl("shared_expert_cpu", torch::kCPU, &shared_expert_cpu); // all reduce m.def("initialize(int size, int rank) -> ()"); m.impl("initialize", torch::kCPU, &initialize); m.def( "shm_allreduce(Tensor data, __torch__.torch.classes.c10d.ProcessGroup process_group, " "__torch__.torch.classes.c10d.ReduceOp reduce_op) -> ()"); m.impl("shm_allreduce", torch::kCPU, &shm_allreduce); m.def("shm_allgather(Tensor data, __torch__.torch.classes.c10d.ProcessGroup process_group, int dim) -> Tensor"); m.impl("shm_allgather", torch::kCPU, &shm_allgather); // rope m.def( "rotary_embedding_cpu(Tensor positions, Tensor query, Tensor key, int head_size, Tensor cos_sin_cache, " "bool is_neox) -> (Tensor, Tensor)"); m.impl("rotary_embedding_cpu", torch::kCPU, &rotary_embedding_cpu); } REGISTER_EXTENSION(common_ops)