/* * Copyright (c) 2024 by FlashInfer team. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "pytorch_extension_utils.h" void bmm_fp8( at::Tensor A, at::Tensor B, at::Tensor D, at::Tensor A_scale, at::Tensor B_scale, at::Tensor workspace_buffer, int64_t cublas_handle, int64_t cuda_stream) { TORCH_CHECK(A.is_cuda(), "A must be a CUDA tensor"); TORCH_CHECK(B.is_cuda(), "B must be a CUDA tensor"); TORCH_CHECK(D.is_cuda(), "D must be a CUDA tensor"); TORCH_CHECK(A.dim() == 3, "Expected 3D tensor for A"); TORCH_CHECK(B.dim() == 3, "Expected 3D tensor for B"); TORCH_CHECK(D.dim() == 3, "Expected 3D tensor for D"); TORCH_CHECK(A.size(0) == B.size(0) && A.size(0) == D.size(0), "Batch sizes must match"); TORCH_CHECK(A.size(2) == B.size(1), "Incompatible matrix sizes"); TORCH_CHECK(A.size(1) == D.size(1) && B.size(2) == D.size(2), "Result tensor has incorrect shape"); // PyTorch is row major by default. cuBLASLt is column major by default. // We need row major D as expected. // A ^ T * B = D, so D ^ T = B ^ T * A DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP8(B.scalar_type(), b_type, [&] { return DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP8(A.scalar_type(), a_type, [&] { return DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(D.scalar_type(), d_type, [&] { auto batch_size = A.size(0); auto m = A.size(1); auto k = A.size(2); auto n = B.size(2); auto lt_handle = reinterpret_cast(cublas_handle); auto stream = reinterpret_cast(cuda_stream); auto status = flashinfer::bmm_fp8::bmm_fp8_internal_cublaslt( workspace_buffer.data_ptr(), workspace_buffer.numel(), static_cast(B.data_ptr()), static_cast(A.data_ptr()), static_cast(D.data_ptr()), batch_size, n, m, k, static_cast(B_scale.data_ptr()), static_cast(A_scale.data_ptr()), lt_handle, stream); TORCH_CHECK( status == CUBLAS_STATUS_SUCCESS, "bmm_fp8_internal_cublaslt failed: ", cublasGetStatusString(status)); return true; }); }); }); }