# Adapted from https://github.com/Dao-AILab/flash-attention/blob/main/hopper/test_flash_attn.py import itertools import math import os import pytest import torch import torch.nn.functional as F from einops import rearrange, repeat apply_rotary_emb = None def is_hopper(): # Only Hopper supports different V headdim return torch.cuda.get_device_properties(0).major == 9 def is_fa3_supported(device=None) -> bool: # There some fa3 FYI # FA3 can fail without a enough shared memory for a some shapes, such as higher # hidden_dim or some special cases. # Right now, fa3 is supported for sm80/sm87 and sm86/sm89. The main different # Between sm80/sm87 and sm86/sm89 is the shared memory size. you can follow the link below for more information # https://docs.nvidia.com/cuda/cuda-c-programming-guide/#shared-memory-8-x # And for sgl-kernel right now, we can build fa3 on sm80/sm86/sm89/sm90a. # That means if you use A100/A*0/L20/L40/L40s/4090 you can use fa3. return ( torch.cuda.get_device_capability(device)[0] == 9 or torch.cuda.get_device_capability(device)[0] == 8 ) and (torch.version.cuda >= "12.3") DISABLE_BACKWARD = True # For CI test, we close them to True. # DISABLE_SPLIT = os.getenv("FLASH_ATTENTION_DISABLE_SPLIT", "FALSE") == "TRUE" # DISABLE_PAGEDKV = os.getenv("FLASH_ATTENTION_DISABLE_PAGEDKV", "FALSE") == "TRUE" # DISABLE_APPENDKV = os.getenv("FLASH_ATTENTION_DISABLE_APPENDKV", "FALSE") == "TRUE" # DISABLE_LOCAL = os.getenv("FLASH_ATTENTION_DISABLE_LOCAL", "FALSE") == "TRUE" # DISABLE_SOFTCAP = os.getenv("FLASH_ATTENTION_DISABLE_SOFTCAP", "FALSE") == "TRUE" # DISABLE_PACKGQA = os.getenv("FLASH_ATTENTION_DISABLE_PACKGQA", "FALSE") == "TRUE" # DISABLE_FP16 = os.getenv("FLASH_ATTENTION_DISABLE_FP16", "FALSE") == "TRUE" # DISABLE_FP8 = ( # os.getenv("FLASH_ATTENTION_DISABLE_FP8", "FALSE") == "TRUE" # or torch.cuda.get_device_capability("cuda")[0] < 9 # ) DISABLE_SPLIT = True DISABLE_PAGEDKV = True DISABLE_APPENDKV = True DISABLE_LOCAL = True DISABLE_SOFTCAP = True DISABLE_PACKGQA = True DISABLE_FP16 = True DISABLE_FP8 = True # Adapted from https://github.com/Dao-AILab/flash-attention/blob/main/hopper/padding.py def unpad_input(hidden_states, attention_mask, unused_mask=None): """ Arguments: hidden_states: (batch, seqlen, ...) attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid. unused_mask: (batch, seqlen), bool / int, 1 means the element is allocated but unused. Return: hidden_states: (total_nnz, ...), where total_nnz = number of tokens selected in attention_mask + unused_mask. indices: (total_nnz), the indices of masked tokens from the flattened input sequence. cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states. max_seqlen_in_batch: int seqused: (batch), returns the number of tokens selected in attention_mask + unused_mask. """ all_masks = ( (attention_mask + unused_mask) if unused_mask is not None else attention_mask ) seqlens_in_batch = all_masks.sum(dim=-1, dtype=torch.int32) used_seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(all_masks.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to # index with integer indices. return ( rearrange(hidden_states, "b s ... -> (b s) ...")[indices], indices, cu_seqlens, max_seqlen_in_batch, used_seqlens_in_batch, ) def generate_random_padding_mask( max_seqlen, batch_size, device, mode="random", zero_lengths=False ): assert mode in ["full", "random", "third"] if mode == "full": lengths = torch.full( (batch_size, 1), max_seqlen, device=device, dtype=torch.int32 ) elif mode == "random": lengths = torch.randint( max(0 if zero_lengths else 1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device, ) elif mode == "third": lengths = torch.randint( max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device ) if zero_lengths: # Generate zero-lengths every 5 batches and the last batch. for i in range(batch_size): if i % 5 == 0: lengths[i] = 0 lengths[-1] = 0 padding_mask = ( repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size) < lengths ) return padding_mask def pad_input(hidden_states, indices, batch, seqlen): """ Arguments: hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. indices: (total_nnz), the indices that represent the non-masked tokens of the original padded input sequence. batch: int, batch size for the padded sequence. seqlen: int, maximum sequence length for the padded sequence. Return: hidden_states: (batch, seqlen, ...) """ dim = hidden_states.shape[1:] output = torch.zeros( (batch * seqlen), *dim, device=hidden_states.device, dtype=hidden_states.dtype ) output[indices] = hidden_states return rearrange(output, "(b s) ... -> b s ...", b=batch) def construct_local_mask( seqlen_q, seqlen_k, window_size=(-1, -1), # -1 means infinite window size sink_token_length=0, query_padding_mask=None, key_padding_mask=None, key_leftpad=None, device=None, ): row_idx = rearrange( torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1" ) col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long) if key_leftpad is not None: key_leftpad = rearrange(key_leftpad, "b -> b 1 1 1") col_idx = repeat(col_idx, "s -> b 1 1 s", b=key_leftpad.shape[0]) col_idx = torch.where(col_idx >= key_leftpad, col_idx - key_leftpad, 2**32) sk = ( seqlen_k if key_padding_mask is None else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1") ) sq = ( seqlen_q if query_padding_mask is None else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1") ) if window_size[0] < 0: return col_idx > row_idx + sk - sq + window_size[1] else: sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk return torch.logical_or( col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk), torch.logical_and( col_idx < row_idx + sk - sq - window_size[0], col_idx >= sink_token_length, ), ) def attention_ref( q, k, v, query_padding_mask=None, key_padding_mask=None, key_leftpad=None, attn_bias=None, dropout_p=0.0, dropout_mask=None, causal=False, qv=None, q_descale=None, k_descale=None, v_descale=None, window_size=(-1, -1), # -1 means infinite window size sink_token_length=0, softcap=0.0, upcast=True, reorder_ops=False, intermediate_dtype=None, ): """ Arguments: q: (batch_size, seqlen_q, nheads, head_dim) k: (batch_size, seqlen_k, nheads, head_dim) v: (batch_size, seqlen_k, nheads, head_dim_v) qv: (batch_size, seqlen_q, nheads, head_dim_v) query_padding_mask: (batch_size, seqlen_q) key_padding_mask: (batch_size, seqlen_k) attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k) dropout_p: float dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k) causal: whether to apply causal masking upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast output back to fp16/bf16. reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.) without changing the math. This is to estimate the numerical error from operation reordering. Output: output: (batch_size, seqlen_q, nheads, head_dim_v) attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout """ if causal: window_size = (window_size[0], 0) dtype_og = q.dtype if upcast: q, k, v = q.float(), k.float(), v.float() qv = qv.float() if qv is not None else None if q_descale is not None: q_descale = repeat(q_descale, "b h -> b 1 (h g) 1", g=q.shape[2] // k.shape[2]) q = (q.float() * q_descale).to(q.dtype) qv = (qv.float() * q_descale).to(qv.dtype) if qv is not None else None if k_descale is not None: k = (k.float() * rearrange(k_descale, "b h -> b 1 h 1")).to(dtype=k.dtype) if v_descale is not None: v = (v.float() * rearrange(v_descale, "b h -> b 1 h 1")).to(dtype=v.dtype) seqlen_q, seqlen_k = q.shape[1], k.shape[1] k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2]) v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2]) d = q.shape[-1] dv = v.shape[-1] softmax_scale = 1.0 / math.sqrt(d if qv is None else d + dv) if not reorder_ops: scores = torch.einsum("bthd,bshd->bhts", q * softmax_scale, k) else: scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale) if qv is not None: scores = scores + torch.einsum("bthd,bshd->bhts", qv * softmax_scale, v) if softcap > 0: scores = torch.tanh(scores / softcap) * softcap if key_padding_mask is not None: scores.masked_fill_( rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf") ) if window_size[0] >= 0 or window_size[1] >= 0: local_mask = construct_local_mask( seqlen_q, seqlen_k, window_size, sink_token_length, query_padding_mask, key_padding_mask, key_leftpad=key_leftpad, device=q.device, ) scores.masked_fill_(local_mask, float("-inf")) if attn_bias is not None: scores = scores + attn_bias attention = torch.softmax(scores, dim=-1).to(v.dtype) # We want to mask here so that the attention matrix doesn't have any NaNs # Otherwise we'll get NaN in dV if query_padding_mask is not None: attention = attention.masked_fill( rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0 ) # Without this we might get NaN in dv if key_padding_mask is not None: attention = attention.masked_fill( rearrange(~key_padding_mask, "b s -> b 1 1 s"), 0.0 ) # Some rows might be completely masked out so we fill them with zero instead of NaN if window_size[0] >= 0 or window_size[1] >= 0: attention = attention.masked_fill( torch.all(local_mask, dim=-1, keepdim=True), 0.0 ) dropout_scaling = 1.0 / (1 - dropout_p) # attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling # output = torch.einsum('bhts,bshd->bthd', attention_drop , v) if dropout_mask is not None: attention_drop = attention.masked_fill(~dropout_mask, 0.0) else: attention_drop = attention if intermediate_dtype is not None: attention_drop = attention_drop.to(intermediate_dtype).to(attention_drop.dtype) output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling) if query_padding_mask is not None: output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0) return output.to(dtype=dtype_og), attention.to(dtype=dtype_og) def generate_qkv( q, k, v, query_padding_mask=None, key_padding_mask=None, kvpacked=False, qkvpacked=False, add_unused_qkv=False, query_unused_mask=None, key_unused_mask=None, ): """ Arguments: q: (batch_size, seqlen_q, nheads, d) k: (batch_size, seqlen_k, nheads_k, d) v: (batch_size, seqlen_k, nheads_k, d) query_padding_mask: (batch_size, seqlen), bool key_padding_mask: (batch_size, seqlen), bool """ assert not (kvpacked and qkvpacked) batch_size, seqlen_q, nheads, d = q.shape _, seqlen_k, nheads_k, _ = k.shape assert k.shape == (batch_size, seqlen_k, nheads_k, d) assert v.shape == (batch_size, seqlen_k, nheads_k, d) if query_unused_mask is not None or key_unused_mask is not None: assert not kvpacked assert not qkvpacked if query_padding_mask is not None: q_unpad, indices_q, cu_seqlens_q, max_seqlen_q, seqused_q = unpad_input( q, query_padding_mask, query_unused_mask, ) output_pad_fn = lambda output_unpad: pad_input( output_unpad, indices_q, batch_size, seqlen_q ) else: q_unpad = rearrange(q, "b s h d -> (b s) h d") cu_seqlens_q = torch.arange( 0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device, ) seqused_q = None max_seqlen_q = seqlen_q output_pad_fn = lambda output_unpad: rearrange( output_unpad, "(b s) h d -> b s h d", b=batch_size ) if key_padding_mask is not None: k_unpad, indices_k, cu_seqlens_k, max_seqlen_k, seqused_k = unpad_input( k, key_padding_mask, key_unused_mask ) v_unpad, _, _, _, _ = unpad_input(v, key_padding_mask, key_unused_mask) else: k_unpad = rearrange(k, "b s h d -> (b s) h d") v_unpad = rearrange(v, "b s h d -> (b s) h d") cu_seqlens_k = torch.arange( 0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device, ) seqused_k = None max_seqlen_k = seqlen_k if qkvpacked: assert (query_padding_mask == key_padding_mask).all() assert nheads == nheads_k qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1) qkv = torch.stack([q, k, v], dim=2) if query_padding_mask is not None: dqkv_pad_fn = lambda dqkv_unpad: pad_input( dqkv_unpad, indices_q, batch_size, seqlen_q ) else: dqkv_pad_fn = lambda dqkv_unpad: rearrange( dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size ) return ( qkv_unpad.detach().requires_grad_(), cu_seqlens_q, max_seqlen_q, qkv.detach().requires_grad_(), output_pad_fn, dqkv_pad_fn, ) elif kvpacked: kv_unpad = torch.stack([k_unpad, v_unpad], dim=1) kv = torch.stack([k, v], dim=2) dq_pad_fn = output_pad_fn if key_padding_mask is not None: dkv_pad_fn = lambda dkv_unpad: pad_input( dkv_unpad, indices_k, batch_size, seqlen_k ) else: dkv_pad_fn = lambda dkv_unpad: rearrange( dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size ) return ( q_unpad.detach().requires_grad_(), kv_unpad.detach().requires_grad_(), cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, q.detach().requires_grad_(), kv.detach().requires_grad_(), output_pad_fn, dq_pad_fn, dkv_pad_fn, ) else: dq_pad_fn = output_pad_fn if key_padding_mask is not None: dk_pad_fn = lambda dk_unpad: pad_input( dk_unpad, indices_k, batch_size, seqlen_k ) else: dk_pad_fn = lambda dk_unpad: rearrange( dk_unpad, "(b s) h d -> b s h d", b=batch_size ) return ( q_unpad.detach().requires_grad_(), k_unpad.detach().requires_grad_(), v_unpad.detach().requires_grad_(), cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k, max_seqlen_q, max_seqlen_k, q.detach().requires_grad_(), k.detach().requires_grad_(), v.detach().requires_grad_(), output_pad_fn, dq_pad_fn, dk_pad_fn, ) @pytest.mark.skipif( not is_fa3_supported(), reason="flash_attn at sgl-kernel is only supported on sm90 or sm80", ) # @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float8_e4m3fn]) @pytest.mark.parametrize( "dtype", [torch.bfloat16] + ([torch.float8_e4m3fn] if not DISABLE_FP8 else []) ) # @pytest.mark.parametrize("dtype", [torch.bfloat16]) # @pytest.mark.parametrize("dtype", [torch.float8_e4m3fn]) # @pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"]) @pytest.mark.parametrize("mha_type", ["mha"]) @pytest.mark.parametrize("new_kv", [False] + ([True] if not DISABLE_APPENDKV else [])) # @pytest.mark.parametrize("new_kv", [True]) # @pytest.mark.parametrize( # "causal,local", # [(False, False), (True, False)] + ([(False, True)] if not DISABLE_LOCAL else []), # ) # @pytest.mark.parametrize("causal,local", [(False, False), (True, False)]) @pytest.mark.parametrize("causal,local", [(False, False)]) @pytest.mark.parametrize( "seqlen_new_eq_seqlen_q", [True, False] if not DISABLE_APPENDKV else [True] ) # @pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True]) # @pytest.mark.parametrize("has_rotary_seqlens", [False, True]) @pytest.mark.parametrize("has_rotary_seqlens", [False]) @pytest.mark.parametrize( "rotary_interleaved", [False, True] if not DISABLE_APPENDKV else [False] ) # @pytest.mark.parametrize("rotary_interleaved", [True]) @pytest.mark.parametrize( "rotary_fraction", ( [0.0, 0.5, 1.0] if (not DISABLE_APPENDKV) and (apply_rotary_emb is not None) else [0.0] ), ) # @pytest.mark.parametrize("rotary_fraction", [0.0]) @pytest.mark.parametrize( "page_size", [None] + ([1, 4, 128] if not DISABLE_PAGEDKV else []) ) # @pytest.mark.parametrize("page_size", [None]) # @pytest.mark.parametrize("has_leftpad", [False, True]) @pytest.mark.parametrize("has_leftpad", [False]) # @pytest.mark.parametrize("has_batch_idx", [False, True]) @pytest.mark.parametrize("has_batch_idx", [False]) # @pytest.mark.parametrize("varlen_q", [False, True]) @pytest.mark.parametrize("varlen_q", [False]) # @pytest.mark.parametrize("d", [32, 59, 64, 80, 128, 256]) # @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256]) # @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192]) # @pytest.mark.parametrize('d', [56, 80]) @pytest.mark.parametrize("d", [64]) # @pytest.mark.parametrize("d", [192]) @pytest.mark.parametrize( "seqlen_q,seqlen_k", [ (1, 128), (1, 339), (3, 1024), (64, 800), (64, 256), (3, 799), (64, 2048), (16, 20000), # (1, 128 * 1024), # (16, 128 * 1024), (128, 128), (256, 512), # To test appending KV with more than 1 block (2048, 3577), # Enough tile to test persistent scheduler ], ) # @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)]) def test_flash_attn_kvcache( seqlen_q, seqlen_k, d, varlen_q, has_batch_idx, has_leftpad, page_size, rotary_fraction, rotary_interleaved, has_rotary_seqlens, seqlen_new_eq_seqlen_q, causal, local, new_kv, mha_type, dtype, ): from sgl_kernel.flash_attn import flash_attn_with_kvcache if page_size is not None and seqlen_k % page_size != 0: pytest.skip() if seqlen_q > seqlen_k and new_kv: pytest.skip() if not new_kv and rotary_fraction > 0.0: pytest.skip() if rotary_fraction == 0.0 and has_rotary_seqlens: pytest.skip() device = "cuda" # set seed torch.random.manual_seed(0) batch_size = 5 # batch_size = 1 batch_size_cache = batch_size if not has_batch_idx else batch_size * 2 nheads = 6 # nheads = 1 # rotary_dim must be a multiple of 16, and must be <= d rotary_dim = math.floor(int(rotary_fraction * d) / 16) * 16 nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3) assert nheads % nheads_k == 0 dtype_ref = torch.bfloat16 if dtype == torch.float8_e4m3fn else dtype dv_vals = [128, d] if d > 128 and d <= 192 else ([256, 512, d] if d <= 64 else [d]) if dtype == torch.float8_e4m3fn or not is_hopper(): # for fp8 and ampere arch, we not support v head dim != qk head dim dv_vals = [d] for dv in dv_vals: has_qv = d == 64 and dv >= 256 q = ( torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype_ref) .to(dtype) .to(dtype_ref) ) if has_qv: qv = ( torch.randn( batch_size, seqlen_q, nheads, dv, device=device, dtype=dtype_ref ) .to(dtype) .to(dtype_ref) ) else: qv = None if varlen_q: query_padding_mask = generate_random_padding_mask( seqlen_q, batch_size, device, mode="random" ) q_unpad, indices_q, cu_seqlens_q, max_seqlen_q, *rest = unpad_input( q, query_padding_mask ) output_pad_fn = lambda output_unpad: pad_input( output_unpad, indices_q, batch_size, seqlen_q ) qv_unpad = ( rearrange(qv, "b s ... -> (b s) ...")[indices_q] if has_qv else None ) else: query_padding_mask = None q_unpad = q qv_unpad = qv cu_seqlens_q, max_seqlen_q = None, None # Put window_size after QKV randn so that window_size changes from test to test window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,)) seqlen_new = ( seqlen_q if seqlen_new_eq_seqlen_q else torch.randint(1, seqlen_q + 1, (1,)).item() ) cu_seqlens_k_new = None key_new_padding_mask = None if new_kv: k = ( torch.randn( batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype_ref ) .to(dtype) .to(dtype_ref) ) v = ( torch.randn( batch_size, seqlen_new, nheads_k, dv, device=device, dtype=dtype_ref ) .to(dtype) .to(dtype_ref) ) if varlen_q: # k & v are also varlen key_new_padding_mask = generate_random_padding_mask( seqlen_new, batch_size, device, mode="random" ) k_unpad, indices_k, cu_seqlens_k_new, *rest = unpad_input( k, key_new_padding_mask ) v_unpad, *rest = unpad_input(v, key_new_padding_mask) else: k_unpad, v_unpad = k, v else: k, v, k_unpad, v_unpad = None, None, None, None if page_size is None: k_cache = ( torch.randn( batch_size_cache, seqlen_k, nheads_k, d, device=device, dtype=dtype_ref, ) .to(dtype) .to(dtype_ref) ) v_cache = ( torch.randn( batch_size_cache, seqlen_k, nheads_k, dv, device=device, dtype=dtype_ref, ) .to(dtype) .to(dtype_ref) ) page_table = None else: ( k_cache, v_cache, page_table, k_cache_paged, v_cache_paged, num_blocks, ) = _generate_block_kvcache( seqlen_k, page_size, batch_size_cache, nheads_k, d, dv, device, dtype, dtype_ref, ) cache_seqlens = torch.randint( 0 if new_kv else 1, # If we don't use seqlen_q in the case of causal and rotary, cos/sin won't be long enough ( ( seqlen_k - (seqlen_q if (causal or local) and rotary_dim > 1 else seqlen_new) + 1 ) if new_kv else (seqlen_k + 1) ), (batch_size,), dtype=torch.int32, device=device, ) if has_leftpad: cache_leftpad = torch.cat( [ ( torch.randint( 0, cache_seqlens[i].item(), (1,), dtype=torch.int32, device=device, ) if cache_seqlens[i].item() > 0 else torch.zeros(1, dtype=torch.int32, device=device) ) for i in range(batch_size) ] ) else: cache_leftpad = None if has_batch_idx: cache_batch_idx = torch.randperm( batch_size_cache, dtype=torch.int32, device=device )[:batch_size] else: cache_batch_idx = None arange = rearrange(torch.arange(seqlen_k, device=device), "s -> 1 s") cache_seqlens_expanded = rearrange(cache_seqlens, "b -> b 1") if not new_kv: key_padding_mask = arange < cache_seqlens_expanded else: k_new_seqlens = ( key_new_padding_mask.sum(-1, keepdims=True) if varlen_q else seqlen_new ) key_padding_mask = arange < cache_seqlens_expanded + k_new_seqlens if has_leftpad: key_padding_mask = torch.logical_and( key_padding_mask, arange >= cache_leftpad.unsqueeze(-1).expand(-1, seqlen_k), ) # cache_seqlens = torch.tensor([64], dtype=torch.int32, device=device) rotary_seqlens = cache_seqlens if not has_rotary_seqlens else cache_seqlens // 2 if rotary_dim > 0: angle = ( torch.rand( seqlen_k if page_size is None else num_blocks * page_size, rotary_dim // 2, device=device, ) * 2 * math.pi ) cos = torch.cos(angle).to(dtype=dtype_ref).to(dtype).to(dtype_ref) sin = torch.sin(angle).to(dtype=dtype_ref).to(dtype).to(dtype_ref) if causal or local: q_ro = apply_rotary_emb( q, cos, sin, seqlen_offsets=rotary_seqlens, interleaved=rotary_interleaved, ) else: q_ro = rearrange( apply_rotary_emb( rearrange(q, "b s h d -> b 1 (s h) d"), cos, sin, seqlen_offsets=rotary_seqlens, interleaved=rotary_interleaved, ), "b 1 (s h) d -> b s h d", s=seqlen_q, ) # q_ro = q k_ro = apply_rotary_emb( k, cos, sin, seqlen_offsets=rotary_seqlens, interleaved=rotary_interleaved, ) else: cos, sin = None, None q_ro, k_ro = q, k # k_cache[:, 64:] = -1 k_cache_ref = ( k_cache if not has_batch_idx else k_cache[cache_batch_idx] ).clone() v_cache_ref = ( v_cache if not has_batch_idx else v_cache[cache_batch_idx] ).clone() if new_kv: update_mask = torch.logical_and( cache_seqlens_expanded <= arange, arange < cache_seqlens_expanded + k_new_seqlens, ) k_to_update = rearrange(k_ro, "b s ... -> (b s) ...") v_to_update = rearrange(v, "b s ... -> (b s) ...") if varlen_q: k_to_update = k_to_update[indices_k] v_to_update = v_to_update[indices_k] k_cache_ref[update_mask] = k_to_update v_cache_ref[update_mask] = v_to_update k_cache_rep = repeat( k_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k ) v_cache_rep = repeat( v_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k ) out_ref, _ = attention_ref( q_ro, k_cache_rep, v_cache_rep, query_padding_mask, key_padding_mask, causal=causal, qv=qv, window_size=window_size, key_leftpad=cache_leftpad, ) out_pt, _ = attention_ref( q_ro, k_cache_rep, v_cache_rep, query_padding_mask, key_padding_mask, causal=causal, qv=qv, window_size=window_size, upcast=False, reorder_ops=True, key_leftpad=cache_leftpad, intermediate_dtype=dtype if dtype == torch.float8_e4m3fn else None, ) q = q.to(dtype) q_unpad = q_unpad.to(dtype) if varlen_q else None k_cache = k_cache.to(dtype) v_cache = v_cache.to(dtype) k_cache_paged = k_cache_paged.to(dtype) if page_size is not None else None v_cache_paged = v_cache_paged.to(dtype) if page_size is not None else None k = k.to(dtype) if k is not None else None v = v.to(dtype) if v is not None else None k_unpad = k_unpad.to(dtype) if k_unpad is not None else None v_unpad = v_unpad.to(dtype) if v_unpad is not None else None qv = qv.to(dtype) if qv is not None else None qv_unpad = qv_unpad.to(dtype) if (varlen_q and qv is not None) else None cos = cos.to(dtype) if cos is not None else None sin = sin.to(dtype) if sin is not None else None k_cache_saved = k_cache.clone() if page_size is None else k_cache_paged.clone() v_cache_saved = v_cache.clone() if page_size is None else v_cache_paged.clone() num_splits_vals = [1, 0] if not DISABLE_SPLIT else [1] precompute_metadata_vals = [False] for num_splits, precompute_metadata in itertools.product( num_splits_vals, precompute_metadata_vals ): scheduler_metadata = None # Repeat to test metadata reuse for _ in range(1 if not precompute_metadata else 2): if page_size is None: k_cache.copy_(k_cache_saved) v_cache.copy_(v_cache_saved) else: k_cache_paged.copy_(k_cache_saved) v_cache_paged.copy_(v_cache_saved) out, lse, *rest = flash_attn_with_kvcache( q if not varlen_q else q_unpad, k_cache if page_size is None else k_cache_paged, v_cache if page_size is None else v_cache_paged, k if not new_kv or not varlen_q else k_unpad, v if not new_kv or not varlen_q else v_unpad, qv=qv if not varlen_q else qv_unpad, rotary_cos=cos, rotary_sin=sin, cache_seqlens=cache_seqlens, cache_batch_idx=cache_batch_idx, cache_leftpad=cache_leftpad, page_table=page_table, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k_new=cu_seqlens_k_new, max_seqlen_q=max_seqlen_q, rotary_seqlens=rotary_seqlens, causal=causal, window_size=window_size, rotary_interleaved=rotary_interleaved, scheduler_metadata=scheduler_metadata, num_splits=num_splits, return_softmax_lse=True, ) if varlen_q: out = output_pad_fn(out) # out = flash_attn_with_kvcache( # q, k_cache, v_cache, cache_seqlens=cache_seqlens, causal=causal, window_size=window_size # ) # out = flash_attn_with_kvcache(q, k_cache, v_cache, causal=causal, window_size=window_size) # qk = torch.einsum("bqhd,bkhd->bhqk", q, k_cache_ref) # m = qk.amax(-1, keepdim=True) # s_tmp = torch.exp((qk - m) / math.sqrt(d)) # o1 = torch.einsum('bhst,bthd->bshd', s_tmp, v_cache_ref) # lse_ref = torch.logsumexp(qk / math.sqrt(d), -1) # probs = torch.softmax(qk, dim=-1) print(f"Output max diff: {(out - out_ref).abs().max().item()}") print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}") print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}") # breakpoint() # Check that FlashAttention's numerical error is at most twice the numerical error # of a Pytorch implementation. if new_kv: if page_size is None: k_cache_select = ( k_cache.to(dtype_ref) if not has_batch_idx else k_cache.to(dtype_ref)[cache_batch_idx] ) v_cache_select = ( v_cache.to(dtype_ref) if not has_batch_idx else v_cache.to(dtype_ref)[cache_batch_idx] ) else: k_cache_select = rearrange( k_cache_paged.to(dtype_ref)[ ( page_table if not has_batch_idx else page_table[cache_batch_idx] ).flatten() ], "(b nblocks) block_size ... -> b (nblocks block_size) ...", b=batch_size, )[:, :seqlen_k].to(dtype_ref) v_cache_select = rearrange( v_cache_paged.to(dtype_ref)[ ( page_table if not has_batch_idx else page_table[cache_batch_idx] ).flatten() ], "(b nblocks) block_size ... -> b (nblocks block_size) ...", b=batch_size, )[:, :seqlen_k].to(dtype_ref) k_cache_ref = k_cache_ref.to(dtype).to(dtype_ref) v_cache_ref = v_cache_ref.to(dtype).to(dtype_ref) if dtype is not torch.float8_e4m3fn: assert torch.equal(v_cache_select, v_cache_ref) else: assert torch.allclose( v_cache_select, v_cache_ref, rtol=1e-3, atol=1e-3 ) # breakpoint() # if rotary_dim == 0 and dtype is not torch.float8_e4m3fn: if rotary_dim == 0: assert torch.equal(k_cache_select, k_cache_ref) else: # if not torch.allclose(k_cache_select, k_cache_ref, rtol=1e-3, atol=1e-3): # breakpoint() if dtype is not torch.float8_e4m3fn: assert torch.allclose( k_cache_select, k_cache_ref, rtol=1e-3, atol=1e-3 ) else: assert torch.allclose( k_cache_select, k_cache_ref, rtol=1e-1, atol=1e-1 ) mult = 4 if dtype == torch.float8_e4m3fn else 2 assert (out - out_ref).abs().max().item() <= mult * ( out_pt - out_ref ).abs().max().item() + 1e-5 mult_mean = 3 if dtype == torch.float8_e4m3fn else 1.5 assert (out - out_ref).abs().mean().item() <= mult_mean * ( out_pt - out_ref ).abs().mean().item() def _generate_block_kvcache( seqlen_k, page_size, batch_size, nheads_k, d, dv, device, dtype, dtype_ref ): num_blocks = math.ceil(seqlen_k / page_size) * batch_size * 3 k_cache_paged = ( torch.randn(num_blocks, page_size, nheads_k, d, device=device, dtype=dtype_ref) .to(dtype) .to(dtype_ref) ) v_cache_paged = ( torch.randn(num_blocks, page_size, nheads_k, dv, device=device, dtype=dtype_ref) .to(dtype) .to(dtype_ref) ) page_table = rearrange( torch.randperm(num_blocks, dtype=torch.int32, device=device), "(b nblocks) -> b nblocks", b=batch_size, ) k_cache = rearrange( k_cache_paged[page_table.flatten()], "(b nblocks) block_size ... -> b (nblocks block_size) ...", b=batch_size, )[:, :seqlen_k] v_cache = rearrange( v_cache_paged[page_table.flatten()], "(b nblocks) block_size ... -> b (nblocks block_size) ...", b=batch_size, )[:, :seqlen_k] return k_cache, v_cache, page_table, k_cache_paged, v_cache_paged, num_blocks @pytest.mark.skipif( not is_fa3_supported(), reason="flash_attn at sgl-kernel is only supported on sm90 or sm80", ) # @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float8_e4m3fn]) @pytest.mark.parametrize( "dtype", [torch.bfloat16] + ([torch.float8_e4m3fn] if not DISABLE_FP8 else []) ) # @pytest.mark.parametrize("dtype", [torch.bfloat16]) # @pytest.mark.parametrize("dtype", [torch.float8_e4m3fn]) # @pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"]) @pytest.mark.parametrize("mha_type", ["mha"]) # @pytest.mark.parametrize("has_qv", [False, True]) @pytest.mark.parametrize("has_qv", [False]) # @pytest.mark.parametrize("deterministic", [False, True]) @pytest.mark.parametrize("deterministic", [False]) @pytest.mark.parametrize("softcap", [0.0] + ([15.0] if not DISABLE_SOFTCAP else [])) # @pytest.mark.parametrize("softcap", [0.0]) @pytest.mark.parametrize("local", [False]) # @pytest.mark.parametrize("local", [False]) @pytest.mark.parametrize("causal", [False, True]) # @pytest.mark.parametrize("causal", [False]) @pytest.mark.parametrize("add_unused_qkv", [False, True]) # @pytest.mark.parametrize("add_unused_qkv", [True]) # @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256]) # @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192, 256]) # @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192]) # @pytest.mark.parametrize('d', [56, 80]) # @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128]) # @pytest.mark.parametrize("d", [64, 96, 128]) # @pytest.mark.parametrize("d", COMPILED_HDIMS) @pytest.mark.parametrize("d", [128]) @pytest.mark.parametrize( "seqlen_q,seqlen_k", [ (1, 1), (1, 3), (2, 1), (511, 1), (3, 513), (64, 128), (128, 128), (256, 256), (113, 203), (128, 217), (113, 211), (108, 256), (256, 512), (307, 256), (640, 128), (512, 256), (1024, 1024), (1023, 1024), (1024, 1023), (2048, 2048), ], ) def test_flash_attn_varlen_output( seqlen_q, seqlen_k, d, add_unused_qkv, causal, local, softcap, deterministic, has_qv, mha_type, dtype, ): from sgl_kernel.flash_attn import flash_attn_varlen_func device = "cuda" # set seed torch.random.manual_seed(seqlen_q + seqlen_k + d + int(causal) * 2 + int(local)) # batch_size = 40 # nheads = 16 batch_size = 9 if seqlen_q <= 2048 else 2 nheads = 6 # batch_size = 2 # nheads = 1 nheads_kv = nheads if mha_type == "mha" else (2 if mha_type == "gqa" else 1) dtype_ref = torch.bfloat16 if dtype == torch.float8_e4m3fn else dtype dv_vals = [128, d] if d > 128 and d <= 192 else ([256, 512, d] if d <= 64 else [d]) if dtype == torch.float8_e4m3fn: dv_vals = [d] for dv in dv_vals: q_ref = torch.randn( batch_size, seqlen_q, nheads, d, device=device, dtype=dtype_ref ) if softcap > 0.0: # Ensure the values of qk are at least within softcap range. q_ref = (q_ref * softcap / 4).detach().requires_grad_() q_ref = q_ref.to(dtype).to(dtype_ref).requires_grad_() k_ref = ( torch.randn( batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype_ref ) .to(dtype) .to(dtype_ref) .requires_grad_() ) v_ref = ( torch.randn( batch_size, seqlen_k, nheads_kv, dv, device=device, dtype=dtype_ref ) .to(dtype) .to(dtype_ref) .requires_grad_() ) if has_qv: qv_ref = ( torch.randn( batch_size, seqlen_q, nheads, dv, device=device, dtype=dtype_ref ) .to(dtype) .to(dtype_ref) ) else: qv_ref = None # Put window_size after QKV randn so that window_size changes from test to test window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,)) if dtype == torch.float8_e4m3fn: q_descale, k_descale, v_descale = [ torch.rand(batch_size, nheads_kv, device=device, dtype=torch.float32) * 2 for _ in range(3) ] else: q_descale, k_descale, v_descale = None, None, None q, k, v = [x.detach().requires_grad_() for x in (q_ref, k_ref, v_ref)] qv = qv_ref.detach() if has_qv else None query_padding_mask = generate_random_padding_mask( seqlen_q, batch_size, device, mode="random", zero_lengths=False ) key_padding_mask = generate_random_padding_mask( seqlen_k, batch_size, device, mode="random", zero_lengths=True ) def _gen_unused_masks(padding_mask, add_unused, max_seq_len, bs, device): if add_unused: another_mask = generate_random_padding_mask(max_seq_len, bs, device) attn_mask = torch.logical_and(padding_mask, another_mask) unused_mask = torch.logical_xor( torch.logical_or(padding_mask, another_mask), attn_mask ) else: attn_mask = padding_mask unused_mask = None return attn_mask, unused_mask query_padding_mask, query_unused_mask = _gen_unused_masks( query_padding_mask, add_unused_qkv, seqlen_q, batch_size, q.device ) key_padding_mask, key_unused_mask = _gen_unused_masks( key_padding_mask, add_unused_qkv, seqlen_k, batch_size, k.device ) ( q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k, max_seqlen_q, max_seqlen_k, q, k, v, output_pad_fn, dq_pad_fn, dk_pad_fn, ) = generate_qkv( q, k, v, query_padding_mask, key_padding_mask, kvpacked=False, query_unused_mask=query_unused_mask, key_unused_mask=key_unused_mask, ) q_unpad, k_unpad, v_unpad = [ x.detach().to(dtype).requires_grad_() for x in (q_unpad, k_unpad, v_unpad) ] out_ref, attn_ref = attention_ref( q_ref, k_ref, v_ref, query_padding_mask, key_padding_mask, causal=causal, qv=qv_ref, q_descale=q_descale, k_descale=k_descale, v_descale=v_descale, window_size=window_size, softcap=softcap, ) out_pt, attn_pt = attention_ref( q_ref, k_ref, v_ref, query_padding_mask, key_padding_mask, causal=causal, qv=qv_ref, q_descale=q_descale, k_descale=k_descale, v_descale=v_descale, window_size=window_size, softcap=softcap, upcast=False, reorder_ops=True, intermediate_dtype=dtype if dtype == torch.float8_e4m3fn else None, ) print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}") print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}") if query_unused_mask is not None: q_zero_masking = rearrange(query_unused_mask, "b s -> b s 1 1") # Numerical error if we just do any arithmetic on out_ref fwd_atol = 2 * (out_ref + 0.3 - 0.3 - out_ref).abs().max().item() rtol = 2 if softcap == 0.0 else 3 pack_gqa_vals = [False, True] if not DISABLE_PACKGQA else [False] num_splits_vals = [1, 3] if not DISABLE_SPLIT else [1] for pack_gqa, num_splits in itertools.product(pack_gqa_vals, num_splits_vals): out_unpad, lse, *rest = flash_attn_varlen_func( q_unpad, k_unpad, v_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, seqused_q=seqused_q, seqused_k=seqused_k, causal=causal, q_descale=q_descale, k_descale=k_descale, v_descale=v_descale, window_size=window_size, softcap=softcap, return_softmax_lse=True, ) out = output_pad_fn(out_unpad) if query_unused_mask is not None: out.masked_fill_(q_zero_masking, 0.0) print(f"Output max diff: {(out - out_ref).abs().max().item()}") print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") # Check that FlashAttention's numerical error is at most 3x the numerical error # of a Pytorch implementation. assert (out - out_ref).abs().max().item() <= rtol * ( out_pt - out_ref ).abs().max().item() + fwd_atol if not DISABLE_BACKWARD and dtype != torch.float8_e4m3fn and not has_qv: g_unpad = torch.randn_like(out_unpad) do_o = ((g_unpad.float() * out_unpad.float()).sum(-1)).transpose(-1, -2) dq_unpad, dk_unpad, dv_unpad = torch.autograd.grad( out_unpad, (q_unpad, k_unpad, v_unpad), g_unpad ) dq = dq_pad_fn(dq_unpad) dk = dk_pad_fn(dk_unpad) dv = dk_pad_fn(dv_unpad) if key_unused_mask is not None: k_zero_masking = rearrange(key_unused_mask, "b s -> b s 1 1") dk.masked_fill_(k_zero_masking, 0.0) dv.masked_fill_(k_zero_masking, 0.0) if query_unused_mask is not None: dq.masked_fill_(q_zero_masking, 0.0) # print(f"dO_O max diff: {(softmax_d - do_o).abs().max().item()}") # assert (softmax_d - do_o).abs().max().item() <= 1e-5 # assert dq_accum.abs().max().item() == 0.0 g = output_pad_fn(g_unpad) # dq, dk, dv = torch.autograd.grad(out, (q, k, v), g) dq_ref, dk_ref, dv_ref = torch.autograd.grad(out_ref, (q_ref, k_ref, v_ref), g) dq_pt, dk_pt, dv_pt = torch.autograd.grad(out_pt, (q_ref, k_ref, v_ref), g) print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}") print(f"dK max diff: {(dk - dk_ref).abs().max().item()}") print(f"dV max diff: {(dv - dv_ref).abs().max().item()}") print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}") print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}") print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}") print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}") print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}") print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}") print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}") print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}") print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}") if not DISABLE_BACKWARD and dtype != torch.float8_e4m3fn and not has_qv: dq_atol = 2 * (dq_ref + 0.3 - 0.3 - dq_ref).abs().max().item() + ( 0 if softcap == 0 else 3e-4 ) assert (dq - dq_ref).abs().max().item() <= rtol * ( dq_pt - dq_ref ).abs().max().item() + dq_atol dk_atol = 2 * (dk_ref + 0.3 - 0.3 - dk_ref).abs().max().item() + ( 0 if softcap == 0 else 3e-4 ) assert (dk - dk_ref).abs().max().item() <= rtol * ( dk_pt - dk_ref ).abs().max().item() + dk_atol dv_atol = 2 * (dv_ref + 0.3 - 0.3 - dv_ref).abs().max().item() + ( 0 if softcap == 0 else 3e-4 ) assert (dv - dv_ref).abs().max().item() <= rtol * ( dv_pt - dv_ref ).abs().max().item() + dv_atol if __name__ == "__main__": pytest.main([__file__])