import pytest import torch from sgl_kernel import int8_scaled_mm def to_int8(tensor: torch.Tensor) -> torch.Tensor: return torch.round(tensor.clamp(min=-128, max=127)).to(dtype=torch.int8) def torch_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias): o = torch.matmul(a.to(torch.float32), b.to(torch.float32)) if bias is not None: o = o.to(torch.float32) * scale_a.view(-1, 1) * scale_b.view(1, -1) + bias else: o = o.to(torch.float32) * scale_a.view(-1, 1) * scale_b.view(1, -1) return o.to(out_dtype) def _test_accuracy_once(M, N, K, with_bias, out_dtype, device): a = to_int8(torch.randn((M, K), device=device) * 5) b = to_int8(torch.randn((N, K), device=device).t() * 5) scale_a = torch.randn((M,), device="cuda", dtype=torch.float32) scale_b = torch.randn((N,), device="cuda", dtype=torch.float32) if with_bias: bias = torch.randn((N,), device="cuda", dtype=out_dtype) * 10 else: bias = None o = int8_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias) o1 = torch_scaled_mm(a, b, scale_a, scale_b, out_dtype, bias) torch.testing.assert_close(o, o1) @pytest.mark.parametrize("M", [1, 16, 32, 64, 128, 512, 1024, 4096, 8192]) @pytest.mark.parametrize("N", [16, 128, 512, 1024, 4096, 8192, 16384]) @pytest.mark.parametrize("K", [512, 1024, 4096, 8192, 16384]) @pytest.mark.parametrize("with_bias", [True, False]) @pytest.mark.parametrize("out_dtype", [torch.float16, torch.bfloat16]) def test_accuracy(M, N, K, with_bias, out_dtype): _test_accuracy_once(M, N, K, with_bias, out_dtype, "cuda") if __name__ == "__main__": pytest.main([__file__])