import pytest import torch from sgl_kernel import qserve_w4a8_per_chn_gemm # Adapted from https://github.com/mit-han-lab/omniserve/blob/main/omniserve/modeling/layers/quantized_linear/w4a8_linear.py def convert_to_qserve_format(qweight, scale, zero): assert qweight.min() >= 0 and qweight.max() <= 15, "Quantized weight out of range" in_features = qweight.shape[1] out_features = qweight.shape[0] assert in_features % 32 == 0, "Input features must be divisible by 32" assert out_features % 32 == 0, "Output features must be divisible by 32" # ---- Repack the weight ---- # # pack to M // 32, K // 32, (8, 4), ([2], 2, 2, 4) qweight_unpack_reorder = ( qweight.reshape( out_features // 32, 2, 2, 8, in_features // 32, 2, 4, 4, ) .permute(0, 4, 3, 6, 1, 5, 2, 7) .contiguous() ) qweight_unpack_reorder = ( qweight_unpack_reorder.permute(0, 1, 2, 3, 5, 6, 7, 4) .contiguous() .to(torch.int8) ) # B_fp16_reorder = B_fp16_reorder[:, :, :, :, :, :, [3, 2, 1, 0]].contiguous() # [16, 0, 17, 1, ...] qweight_unpack_repacked = ( qweight_unpack_reorder[..., 1] << 4 ) + qweight_unpack_reorder[..., 0] qweight_unpack_repacked = qweight_unpack_repacked.reshape( out_features // 32, in_features // 32, 32, 16 ) qweight_unpack_repacked = qweight_unpack_repacked.reshape( out_features, in_features // 2 ).contiguous() # ---- Pack the scales ---- # scale = scale.reshape(out_features).to(torch.float16).contiguous() szero = zero.reshape(out_features).to(torch.float16).contiguous() * scale return qweight_unpack_repacked, scale, szero # INT4 Quantization def asym_quantize_tensor(tensor): tensor_min = tensor.min(dim=-1, keepdim=True)[0] tensor_max = tensor.max(dim=-1, keepdim=True)[0] q_min = 0 q_max = 15 tensor_scale = (tensor_max - tensor_min) / (q_max - q_min) tensor_zero = q_min - torch.round(tensor_min / tensor_scale) tensor_q = torch.clamp( torch.round(tensor / tensor_scale) + tensor_zero, q_min, q_max ).to(torch.int8) return tensor_q, tensor_scale.to(torch.float16), tensor_zero.to(torch.int8) # INT8 Quantization def sym_quantize_tensor(tensor): tensor_scale = tensor.abs().max(dim=-1, keepdim=True)[0] / 127 tensor_q = torch.clamp(torch.round(tensor / tensor_scale), -128, 127).to(torch.int8) return tensor_q, tensor_scale.to(torch.float16) def torch_w4a8_per_chn_gemm(a, b, a_scale, b_scale, b_zero, out_dtype): print(a.shape) print(b.shape) print(b_zero.shape) o = torch.matmul( a.to(torch.float16), (b.to(torch.float16) - b_zero.to(torch.float16)).t() ) o = o * a_scale.view(-1, 1) * b_scale.view(1, -1) return o.to(out_dtype) def _test_accuracy_once(M, N, K, out_dtype, device): # to avoid overflow, multiply 0.01 a = torch.randn((M, K), device=device, dtype=torch.float32) * 0.01 b = torch.randn((N, K), device=device, dtype=torch.float32) * 0.01 # symmetric quantize a a_q, a_scale = sym_quantize_tensor(a) # asymmetric quantize b b_q, b_scale, b_zero = asym_quantize_tensor(b) # convert to qserve format b_q_format, b_scale_format, b_szero_format = convert_to_qserve_format( b_q, b_scale, b_zero ) # cal sum of every row of a a_sum = a.sum(dim=-1, keepdim=True).to(torch.float16) out = qserve_w4a8_per_chn_gemm( a_q, b_q_format, b_scale_format, a_scale, b_szero_format, a_sum ) ref_out = torch_w4a8_per_chn_gemm(a_q, b_q, a_scale, b_scale, b_zero, out_dtype) torch.testing.assert_close(out, ref_out, rtol=1e-3, atol=1e-2) @pytest.mark.parametrize("M", [1, 16, 32, 64, 128, 512, 1024, 4096, 8192]) @pytest.mark.parametrize("N", [128, 512, 1024, 4096, 8192, 16384]) @pytest.mark.parametrize("K", [512, 1024, 4096, 8192, 16384]) @pytest.mark.parametrize("out_dtype", [torch.float16]) def test_accuracy(M, N, K, out_dtype): _test_accuracy_once(M, N, K, out_dtype, "cuda") if __name__ == "__main__": pytest.main([__file__])