import math import torch import torch.nn.functional as F precision = { torch.bfloat16: 1e-2, torch.float16: 1e-3, torch.float32: 1e-5, } BLOCK_N, BLOCK_K = 64, 128 factor_for_scale = 1e-3 fp8_max, fp8_min = 400, -400 def SiluAndMul(x: torch.Tensor) -> torch.Tensor: d = x.shape[-1] // 2 return F.silu(x[..., :d]) * x[..., d:] def per_token_quant_int8(x): x = x.float() absmax = x.abs().max(dim=-1).values absmax = absmax.clamp_min(1e-10).unsqueeze(-1) scale_x = absmax / 127 x_q = x.mul(127 / absmax) x_q = torch.round(x_q).to(torch.int8) return x_q, scale_x def convert_weight(weight, scale_block_size, A_dtype): N, K = weight.size() fp8_max = 448.0 scale_block_size_N, scale_block_size_K = scale_block_size # (128, 128) pad_N = (scale_block_size_N - (N % scale_block_size_N)) % scale_block_size_N pad_K = (scale_block_size_K - (K % scale_block_size_K)) % scale_block_size_K if pad_N > 0 or pad_K > 0: weight = torch.nn.functional.pad(weight, (0, pad_K, 0, pad_N)) weight_blocks = weight.view( math.ceil(N / scale_block_size_N), scale_block_size_N, math.ceil(K / scale_block_size_K), scale_block_size_K, ) # (8, 128, 8, 128) weight_blocks = weight_blocks.permute(0, 2, 1, 3).contiguous() # (8, 8, 128, 128) # Step 2: compute per-block max abs values → scale abs_max = weight_blocks.abs().amax(dim=(-2, -1), keepdim=True) # (8, 8, 1, 1) scales = abs_max / fp8_max scales = torch.where( scales == 0, torch.ones_like(scales), scales ) # avoid division by zero q_fp8 = (weight_blocks / scales).to(torch.float8_e4m3fn) q_fp8_reshape = q_fp8.permute(0, 2, 1, 3).contiguous() if pad_N > 0 or pad_K > 0: q_fp8_reshape = q_fp8_reshape.view(N + pad_N, K + pad_K) q_fp8_reshape = q_fp8_reshape[:N, :K].contiguous() else: q_fp8_reshape = q_fp8_reshape.view(N, K) dq_weight = q_fp8.float() * scales dq_weight = dq_weight.permute(0, 2, 1, 3).contiguous() # (8, 128, 8, 128) if pad_N > 0 or pad_K > 0: w_dq = dq_weight.view(N + pad_N, K + pad_K).to(A_dtype) w_dq = w_dq[:N, :K].contiguous() else: w_dq = dq_weight.view(N, K).to(A_dtype) scales = scales.view( math.ceil(N / scale_block_size_N), math.ceil(K / scale_block_size_K) ) return q_fp8_reshape, scales, w_dq def native_w8a8_per_token_matmul(A, B, As, Bs, bias, output_dtype=torch.bfloat16): """Matrix multiplication function that supports per-token input quantization and per-column weight quantization""" A = A.to(torch.float32) B = B.to(torch.float32) assert A.shape[-1] == B.shape[-1], "Dimension mismatch" assert B.ndim == 2 and B.is_contiguous(), "B must be a 2D contiguous tensor" # Reshape input M = A.numel() // A.shape[-1] B = B.t() # Transpose weight matrix N, K = B.shape origin_C_shape = A.shape[:-1] + (K,) A = A.reshape(M, N) # As is per-token [M, 1], Bs is per-column [1, K] C = torch.matmul(A, B) # [M, K] C = As * C * Bs.view(1, -1) # Broadcast per-column scale if bias is not None: C.add_(bias.view(1, -1)) return C.reshape(origin_C_shape).to(output_dtype) def torch_naive_moe(a, w1, w2, b, routed_scaling_factor): ic1 = torch.matmul(a, w1.transpose(0, 1)) ic2 = SiluAndMul(ic1) ic3 = torch.matmul(ic2, w2.transpose(0, 1)) return ic3 + b * routed_scaling_factor def torch_w8a8_per_column_moe(a, w1_q, w2_q, w1_s, w2_s, b, routed_scaling_factor): # Perform per-token quantization a_q, a_s = per_token_quant_int8(a) ic1 = native_w8a8_per_token_matmul( a_q, w1_q, a_s, w1_s, bias=None, output_dtype=torch.float32 ) ic2 = SiluAndMul(ic1) a1_q, a1_s = per_token_quant_int8(ic2) ic3 = native_w8a8_per_token_matmul( a1_q, w2_q, a1_s, w2_s, bias=None, output_dtype=torch.float32 ) return ic3 + b * routed_scaling_factor def scaled_weight(weight, scales): E, N, K = weight.shape weight_block = ( weight.view(E, N // BLOCK_N, BLOCK_N, K // BLOCK_K, BLOCK_K) .permute(0, 1, 3, 2, 4) .float() .contiguous() ) return ( (weight_block * scales.view(E, N // BLOCK_N, K // BLOCK_K, 1, 1)) .permute(0, 1, 3, 2, 4) .contiguous() .view(E, N, K) ) def torch_naive_fused_moe(a, w1, w2, score, topk, renormalize): B, D = a.shape a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D) out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device) score = torch.softmax(score, dim=-1, dtype=torch.float32) topk_weight, topk_ids = torch.topk(score, topk) if renormalize: topk_weight = topk_weight / topk_weight.sum(dim=-1, keepdim=True) topk_weight = topk_weight.view(-1) topk_ids = topk_ids.view(-1) for i in range(w1.shape[0]): mask = topk_ids == i if mask.sum(): out[mask] = SiluAndMul(a[mask] @ w1[i].transpose(0, 1)) @ w2[i].transpose( 0, 1 ) return ( out.view(B, -1, w2.shape[1]) * topk_weight.view(B, -1, 1).to(out.dtype) ).sum(dim=1) def torch_w8a8_per_column_fused_moe(a, w1, w2, w1_s, w2_s, topk_weight, topk_ids, topk): """This function performs fused moe with per-column int8 quantization using native torch.""" B, D = a.shape # Perform per-token quantization a_q, a_s = per_token_quant_int8(a) # Repeat tokens to match topk a_q = a_q.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D) # Also repeat the scale a_s = a_s.view(B, -1, 1).repeat(1, topk, 1).reshape(-1, 1) # [B*topk, 1] out = torch.zeros(B * topk, w2.shape[1], dtype=torch.float32, device=a.device) # Calculate routing topk_weight = topk_weight.view(-1) topk_ids = topk_ids.view(-1) # Process each expert for i in range(w1.shape[0]): mask = topk_ids == i if mask.sum(): # First MLP layer: note that a_s is now per-token inter_out = native_w8a8_per_token_matmul( a_q[mask], w1[i], a_s[mask], w1_s[i], bias=None, output_dtype=torch.float32, ) # Activation function act_out = SiluAndMul(inter_out) # Quantize activation output with per-token act_out_q, act_out_s = per_token_quant_int8(act_out) # Second MLP layer out[mask] = native_w8a8_per_token_matmul( act_out_q, w2[i], act_out_s, w2_s[i], bias=None, output_dtype=torch.float32, ) # Apply routing weights and sum return ( (out.view(B, -1, w2.shape[1]) * topk_weight.view(B, -1, 1).to(out.dtype)) .sum(dim=1) .to(a.dtype) ) def native_fp8_fused_moe(a, w1, w2, topk_weight, topk_ids, topk): B, D = a.shape a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D).float() out = torch.zeros(B * topk, w2.shape[1], dtype=torch.float32, device=a.device) # Calculate routing topk_weight = topk_weight.view(-1) topk_ids = topk_ids.view(-1) for i in range(w1.shape[0]): mask = topk_ids == i if mask.sum(): ic0 = torch.matmul(a[mask], w1[i].transpose(0, 1)) ic1 = SiluAndMul(ic0) out[mask] = torch.matmul(ic1, w2[i].transpose(0, 1)) return ( (out.view(B, -1, w2.shape[1]) * topk_weight.view(B, -1, 1).to(out.dtype)) .sum(dim=1) .to(a.dtype) ) def make_non_contiguous(x: torch.Tensor) -> torch.Tensor: """ Make a tensor non-contiguous by slicing it via last dimension. """ last_dim = x.shape[-1] return x[..., : last_dim // 2] if x.is_contiguous() else x