# Copyright 2023-2024 SGLang Team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import multiprocessing as mp import unittest import torch from sglang.test.runners import HFRunner, SRTRunner from sglang.test.test_utils import CustomTestCase, get_similarities TEXTS = "two Subway Series sandwiches with meats, cheese, lettuce, tomatoes, and onions on a black background, accompanied by the Subway Series logo, highlighting a new sandwich series." IMAGES = "https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild/resolve/main/images/023.jpg" MODELS = [ ("Alibaba-NLP/gme-Qwen2-VL-2B-Instruct", 1e-3), ] TORCH_DTYPES = [torch.float16] class TestQmeQwenModels(CustomTestCase): @classmethod def setUpClass(cls): mp.set_start_method("spawn", force=True) def assert_close_embeddings(self, model, prefill_tolerance, torch_dtype): prompts_no_image = f"<|im_start|>system\nYou are a helpful assistant<|im_end|>\n<|im_start|>user\n{TEXTS}<|im_end|>\n<|im_start|>assistant\n<|endoftext|>" prompts_with_image = f"<|im_start|>system\nYou are a helpful assistant<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|><|im_end|>\n<|im_start|>assistant\n<|endoftext|>" with HFRunner( model, torch_dtype=torch_dtype, model_type="embedding", ) as hf_runner: hf_text_embeddings = hf_runner.forward(prompts=[prompts_no_image]) hf_image_embeddings = hf_runner.forward( prompts=[prompts_with_image], image_data=[IMAGES] ) with SRTRunner( model, tp_size=1, torch_dtype=torch_dtype, model_type="embedding", ) as srt_runner: srt_text_embeddings = srt_runner.forward(prompts=prompts_no_image) srt_image_embeddings = srt_runner.forward( prompts=prompts_with_image, image_data=IMAGES ) similarity = get_similarities( hf_text_embeddings.embed_logits[0], srt_text_embeddings.embed_logits[0] ) print("texts similarity diff", abs(similarity - 1)) assert torch.all( abs(similarity - 1) < prefill_tolerance ), "embeddings are not all close" similarity = get_similarities( hf_image_embeddings.embed_logits[0], srt_image_embeddings.embed_logits[0] ) print("images similarity diff", abs(similarity - 1)) assert torch.all( abs(similarity - 1) < prefill_tolerance ), "embeddings are not all close" def test_accuracy(self): for model, prefill_tolerance in MODELS: for torch_dtype in TORCH_DTYPES: self.assert_close_embeddings(model, prefill_tolerance, torch_dtype) if __name__ == "__main__": unittest.main()