import base64 import copy import io import json import os from concurrent.futures import ThreadPoolExecutor import numpy as np import openai import requests from PIL import Image from sglang.srt.utils import kill_process_tree from sglang.test.test_utils import ( DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH, DEFAULT_URL_FOR_TEST, CustomTestCase, popen_launch_server, ) # image IMAGE_MAN_IRONING_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/images/man_ironing_on_back_of_suv.png" IMAGE_SGL_LOGO_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/images/sgl_logo.png" # video VIDEO_JOBS_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/videos/jobs_presenting_ipod.mp4" # audio AUDIO_TRUMP_SPEECH_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/audios/Trump_WEF_2018_10s.mp3" AUDIO_BIRD_SONG_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/audios/bird_song.mp3" class TestOpenAIVisionServer(CustomTestCase): @classmethod def setUpClass(cls): cls.model = "lmms-lab/llava-onevision-qwen2-0.5b-ov" cls.base_url = DEFAULT_URL_FOR_TEST cls.api_key = "sk-123456" cls.process = popen_launch_server( cls.model, cls.base_url, timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH, api_key=cls.api_key, ) cls.base_url += "/v1" @classmethod def tearDownClass(cls): kill_process_tree(cls.process.pid) def get_request_kwargs(self): return {} def test_single_image_chat_completion(self): client = openai.Client(api_key=self.api_key, base_url=self.base_url) response = client.chat.completions.create( model="default", messages=[ { "role": "user", "content": [ { "type": "image_url", "image_url": {"url": IMAGE_MAN_IRONING_URL}, }, { "type": "text", "text": "Describe this image in a very short sentence.", }, ], }, ], temperature=0, **(self.get_request_kwargs()), ) assert response.choices[0].message.role == "assistant" text = response.choices[0].message.content assert isinstance(text, str) # `driver` is for gemma-3-it assert ( "man" in text or "person" or "driver" in text ), f"text: {text}, should contain man, person or driver" assert ( "cab" in text or "taxi" in text or "SUV" in text or "vehicle" in text or "car" in text ), f"text: {text}, should contain cab, taxi, SUV, vehicle or car" # MiniCPMO fails to recognize `iron`, but `hanging` assert ( "iron" in text or "hang" in text or "cloth" in text or "holding" in text ), f"text: {text}, should contain iron, hang, cloth or holding" assert response.id assert response.created assert response.usage.prompt_tokens > 0 assert response.usage.completion_tokens > 0 assert response.usage.total_tokens > 0 def test_multi_turn_chat_completion(self): client = openai.Client(api_key=self.api_key, base_url=self.base_url) response = client.chat.completions.create( model="default", messages=[ { "role": "user", "content": [ { "type": "image_url", "image_url": {"url": IMAGE_MAN_IRONING_URL}, }, { "type": "text", "text": "Describe this image in a very short sentence.", }, ], }, { "role": "assistant", "content": [ { "type": "text", "text": "There is a man at the back of a yellow cab ironing his clothes.", } ], }, { "role": "user", "content": [ {"type": "text", "text": "Repeat your previous answer."} ], }, ], temperature=0, **(self.get_request_kwargs()), ) assert response.choices[0].message.role == "assistant" text = response.choices[0].message.content assert isinstance(text, str) assert ( "man" in text or "cab" in text ), f"text: {text}, should contain man or cab" assert response.id assert response.created assert response.usage.prompt_tokens > 0 assert response.usage.completion_tokens > 0 assert response.usage.total_tokens > 0 def test_multi_images_chat_completion(self): client = openai.Client(api_key=self.api_key, base_url=self.base_url) response = client.chat.completions.create( model="default", messages=[ { "role": "user", "content": [ { "type": "image_url", "image_url": {"url": IMAGE_MAN_IRONING_URL}, "modalities": "multi-images", }, { "type": "image_url", "image_url": {"url": IMAGE_SGL_LOGO_URL}, "modalities": "multi-images", }, { "type": "text", "text": "I have two very different images. They are not related at all. " "Please describe the first image in one sentence, and then describe the second image in another sentence.", }, ], }, ], temperature=0, **(self.get_request_kwargs()), ) assert response.choices[0].message.role == "assistant" text = response.choices[0].message.content assert isinstance(text, str) print("-" * 30) print(f"Multi images response:\n{text}") print("-" * 30) assert ( "man" in text or "cab" in text or "SUV" in text or "taxi" in text ), f"text: {text}, should contain man, cab, SUV or taxi" assert ( "logo" in text or '"S"' in text or "SG" in text ), f"text: {text}, should contain logo, S or SG" assert response.id assert response.created assert response.usage.prompt_tokens > 0 assert response.usage.completion_tokens > 0 assert response.usage.total_tokens > 0 def prepare_video_messages(self, video_path): # the memory consumed by the Vision Attention varies a lot, e.g. blocked qkv vs full-sequence sdpa # the size of the video embeds differs from the `modality` argument when preprocessed # We import decord here to avoid a strange Segmentation fault (core dumped) issue. # The following import order will cause Segmentation fault. # import decord # from transformers import AutoTokenizer from decord import VideoReader, cpu max_frames_num = 20 vr = VideoReader(video_path, ctx=cpu(0)) total_frame_num = len(vr) uniform_sampled_frames = np.linspace( 0, total_frame_num - 1, max_frames_num, dtype=int ) frame_idx = uniform_sampled_frames.tolist() frames = vr.get_batch(frame_idx).asnumpy() base64_frames = [] for frame in frames: pil_img = Image.fromarray(frame) buff = io.BytesIO() pil_img.save(buff, format="JPEG") base64_str = base64.b64encode(buff.getvalue()).decode("utf-8") base64_frames.append(base64_str) messages = [{"role": "user", "content": []}] frame_format = { "type": "image_url", "image_url": {"url": "data:image/jpeg;base64,{}"}, "modalities": "video", } for base64_frame in base64_frames: frame_format["image_url"]["url"] = "data:image/jpeg;base64,{}".format( base64_frame ) messages[0]["content"].append(frame_format.copy()) prompt = {"type": "text", "text": "Please describe the video in detail."} messages[0]["content"].append(prompt) return messages def prepare_video_messages_video_direct(self, video_path): messages = [ { "role": "user", "content": [ { "type": "image_url", "image_url": {"url": f"video:{video_path}"}, "modalities": "video", }, {"type": "text", "text": "Please describe the video in detail."}, ], }, ] return messages def get_or_download_file(self, url: str) -> str: cache_dir = os.path.expanduser("~/.cache") if url is None: raise ValueError() file_name = url.split("/")[-1] file_path = os.path.join(cache_dir, file_name) os.makedirs(cache_dir, exist_ok=True) if not os.path.exists(file_path): response = requests.get(url) response.raise_for_status() with open(file_path, "wb") as f: f.write(response.content) return file_path def test_video_chat_completion(self): url = VIDEO_JOBS_URL file_path = self.get_or_download_file(url) client = openai.Client(api_key=self.api_key, base_url=self.base_url) # messages = self.prepare_video_messages_video_direct(file_path) messages = self.prepare_video_messages(file_path) response = client.chat.completions.create( model="default", messages=messages, temperature=0, max_tokens=1024, stream=False, **(self.get_request_kwargs()), ) video_response = response.choices[0].message.content print("-" * 30) print(f"Video response:\n{video_response}") print("-" * 30) # Add assertions to validate the video response assert ( "iPod" in video_response or "device" in video_response ), f"video_response: {video_response}, should contain 'iPod' or 'device'" assert ( "man" in video_response or "person" in video_response or "individual" in video_response or "speaker" in video_response ), f"video_response: {video_response}, should either have 'man' in video_response, or 'person' in video_response, or 'individual' in video_response or 'speaker' in video_response" assert ( "present" in video_response or "examine" in video_response or "display" in video_response or "hold" in video_response ), f"video_response: {video_response}, should contain 'present', 'examine', 'display', or 'hold'" assert ( "black" in video_response or "dark" in video_response ), f"video_response: {video_response}, should contain 'black' or 'dark'" self.assertIsNotNone(video_response) self.assertGreater(len(video_response), 0) def test_regex(self): client = openai.Client(api_key=self.api_key, base_url=self.base_url) regex = ( r"""\{""" + r""""color":"[\w]+",""" + r""""number_of_cars":[\d]+""" + r"""\}""" ) extra_kwargs = self.get_request_kwargs() extra_kwargs.setdefault("extra_body", {})["regex"] = regex response = client.chat.completions.create( model="default", messages=[ { "role": "user", "content": [ { "type": "image_url", "image_url": {"url": IMAGE_MAN_IRONING_URL}, }, { "type": "text", "text": "Describe this image in the JSON format.", }, ], }, ], temperature=0, **extra_kwargs, ) text = response.choices[0].message.content try: js_obj = json.loads(text) except (TypeError, json.decoder.JSONDecodeError): print("JSONDecodeError", text) raise assert isinstance(js_obj["color"], str) assert isinstance(js_obj["number_of_cars"], int) def run_decode_with_image(self, image_id): client = openai.Client(api_key=self.api_key, base_url=self.base_url) content = [] if image_id == 0: content.append( { "type": "image_url", "image_url": {"url": IMAGE_MAN_IRONING_URL}, } ) elif image_id == 1: content.append( { "type": "image_url", "image_url": {"url": IMAGE_SGL_LOGO_URL}, } ) else: pass content.append( { "type": "text", "text": "Describe this image in a very short sentence.", } ) response = client.chat.completions.create( model="default", messages=[ {"role": "user", "content": content}, ], temperature=0, **(self.get_request_kwargs()), ) assert response.choices[0].message.role == "assistant" text = response.choices[0].message.content assert isinstance(text, str) def test_mixed_batch(self): image_ids = [0, 1, 2] * 4 with ThreadPoolExecutor(4) as executor: list(executor.map(self.run_decode_with_image, image_ids)) def prepare_audio_messages(self, prompt, audio_file_name): messages = [ { "role": "user", "content": [ { "type": "audio_url", "audio_url": {"url": f"{audio_file_name}"}, }, { "type": "text", "text": prompt, }, ], } ] return messages def get_audio_response(self, url: str, prompt, category): audio_file_path = self.get_or_download_file(url) client = openai.Client(api_key="sk-123456", base_url=self.base_url) messages = self.prepare_audio_messages(prompt, audio_file_path) response = client.chat.completions.create( model="default", messages=messages, temperature=0, max_tokens=128, stream=False, **(self.get_request_kwargs()), ) audio_response = response.choices[0].message.content print("-" * 30) print(f"audio {category} response:\n{audio_response}") print("-" * 30) audio_response = audio_response.lower() self.assertIsNotNone(audio_response) self.assertGreater(len(audio_response), 0) return audio_response def _test_audio_speech_completion(self): # a fragment of Trump's speech audio_response = self.get_audio_response( AUDIO_TRUMP_SPEECH_URL, "I have an audio sample. Please repeat the person's words", category="speech", ) assert "thank you" in audio_response assert "it's a privilege to be here" in audio_response assert "leader" in audio_response assert "science" in audio_response assert "art" in audio_response def _test_audio_ambient_completion(self): # bird song audio_response = self.get_audio_response( AUDIO_BIRD_SONG_URL, "Please listen to the audio snippet carefully and transcribe the content.", "ambient", ) assert "bird" in audio_response def test_audio_chat_completion(self): pass