import os, json, datetime, textwrap, requests, gradio as gr from pathlib import Path #─────────────────────────────────────────────────────────────────────────────── # 1. 服务端 & 权重路径 #─────────────────────────────────────────────────────────────────────────────── API_URL = "http://localhost:30000/generate" API_KEY = "token-abc123" MODEL_PATH = Path("/root/.cradle/Alibaba/Qwen3-30B-A3B-Base") # ← 改成 supervisor 里传的路径 # 自动读取权重里的名字,若失败就退回目录名 def detect_model_name(model_path: Path) -> str: cfg = model_path / "config.json" if cfg.exists(): with open(cfg, "r", encoding="utf-8") as f: data = json.load(f) # Qwen / LLaMA / GPT‑NeoX … 都有 "architectures" 或 "model_type" return data.get("architectures", [None])[0] or data.get("model_type") or model_path.name return model_path.name MODEL_NAME = detect_model_name(MODEL_PATH) def now(): return datetime.datetime.now().strftime("%H:%M:%S") #─────────────────────────────────────────────────────────────────────────────── # 2. 调用 SGLang /generate #─────────────────────────────────────────────────────────────────────────────── def call_backend(text, sampling): payload = {"model": MODEL_NAME, "text": text, "sampling_params": sampling} print(f"\n🟡 [{now()} payload] {json.dumps(payload, ensure_ascii=False)[:400]}…") resp = requests.post( API_URL, headers={"Authorization": f"Bearer {API_KEY}", "Content-Type": "application/json"}, json=payload, timeout=180 ) if resp.status_code != 200: return f"[HTTP {resp.status_code}] {resp.text[:300]}" try: return json.loads(resp.text).get("text", "").strip() or "[⚠ 后端无 text]" except json.JSONDecodeError: snippet = textwrap.shorten(resp.text, 300, placeholder=" …") return f"[⚠ JSON 解析失败] {snippet}" #─────────────────────────────────────────────────────────────────────────────── # 3. Gradio 主函数 #─────────────────────────────────────────────────────────────────────────────── def chat( user_msg, history, max_new, temperature, top_p, top_k, rep_pen, pres_pen, stop_raw ): stop = [s.strip() for s in stop_raw.split(",") if s.strip()] or None sampling = { "max_new_tokens": int(max_new), "temperature": temperature, "top_p": top_p, "top_k": int(top_k), "repetition_penalty": rep_pen, "presence_penalty": pres_pen, } if stop: sampling["stop"] = stop return call_backend(user_msg, sampling) #─────────────────────────────────────────────────────────────────────────────── # 4. Gradio UI #─────────────────────────────────────────────────────────────────────────────── with gr.Blocks(title="Base 模型对话界面") as demo: gr.Markdown(f"## 💬 Base 模型对话界面 \n*正在使用权重* **{MODEL_PATH.name}**") # ── 采样参数控件 ─────────────────────────────────────────────────────────── with gr.Row(): max_new = gr.Slider(32, 32768, 2048, label="max_new_tokens") temperature = gr.Slider(0.0, 1.5, 0.8, step=0.05, label="temperature") with gr.Row(): top_p = gr.Slider(0.0, 1.0, 0.95, step=0.01, label="top_p") top_k = gr.Slider(0, 200, 50, step=1, label="top_k") with gr.Row(): rep_pen = gr.Slider(0.8, 2.0, 1.05, step=0.01, label="repetition_penalty") pres_pen = gr.Slider(0.0, 2.0, 0.0, step=0.05, label="presence_penalty") stop_text = gr.Textbox("", label="stop 序列(逗号分隔)", placeholder="如: ###,END") # ── Chatbot & 按钮 ──────────────────────────────────────────────────────── ping_btn = gr.Button("🔁 测试 API") ping_out = gr.Textbox(label="API 测试结果", interactive=False) chat_ui = gr.ChatInterface( fn=chat, additional_inputs=[max_new, temperature, top_p, top_k, rep_pen, pres_pen, stop_text], type="messages" ) def ping_api(max_new, temperature, top_p, top_k, rep_pen, pres_pen, stop_raw): stop = [s.strip() for s in stop_raw.split(",") if s.strip()] or None sampling = { "max_new_tokens": int(max_new), "temperature": temperature, "top_p": top_p, "top_k": int(top_k), "repetition_penalty": rep_pen, "presence_penalty": pres_pen, **({"stop": stop} if stop else {}) } return call_backend("Ping?", sampling)[:200] ping_btn.click( fn=ping_api, inputs=[max_new, temperature, top_p, top_k, rep_pen, pres_pen, stop_text], outputs=ping_out ) demo.launch(server_name="0.0.0.0", server_port=30001)