119 lines
3.6 KiB
Python
119 lines
3.6 KiB
Python
import argparse
|
|
import asyncio
|
|
import json
|
|
import time
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
|
|
from sglang.test.test_utils import add_common_other_args_and_parse, get_call_select
|
|
from sglang.utils import download_and_cache_file, read_jsonl
|
|
|
|
|
|
def get_one_example(lines, i, include_answer):
|
|
ret = lines[i]["activity_label"] + ": " + lines[i]["ctx"] + " "
|
|
if include_answer:
|
|
ret += lines[i]["endings"][lines[i]["label"]]
|
|
return ret
|
|
|
|
|
|
def get_few_shot_examples(lines, k):
|
|
ret = ""
|
|
for i in range(k):
|
|
ret += get_one_example(lines, i, True) + "\n\n"
|
|
return ret
|
|
|
|
|
|
def main(args):
|
|
# Select backend
|
|
call_select = get_call_select(args)
|
|
|
|
# Read data
|
|
url = "https://raw.githubusercontent.com/rowanz/hellaswag/master/data/hellaswag_val.jsonl"
|
|
filename = download_and_cache_file(url)
|
|
lines = list(read_jsonl(filename))
|
|
|
|
# Construct prompts
|
|
num_questions = args.num_questions
|
|
num_shots = args.num_shots
|
|
few_shot_examples = get_few_shot_examples(lines, num_shots)
|
|
|
|
questions = []
|
|
choices = []
|
|
labels = []
|
|
for i in range(len(lines[:num_questions])):
|
|
questions.append(get_one_example(lines, i, False))
|
|
choices.append(lines[i]["endings"])
|
|
labels.append(lines[i]["label"])
|
|
|
|
preds = [None] * len(labels)
|
|
|
|
# Run requests
|
|
if args.backend != "lmql":
|
|
# Use thread pool
|
|
def get_one_answer(i):
|
|
preds[i] = call_select(
|
|
context=few_shot_examples + questions[i], choices=choices[i]
|
|
)
|
|
|
|
tic = time.perf_counter()
|
|
if args.parallel == 1:
|
|
for i in tqdm(range(len(questions))):
|
|
get_one_answer(i)
|
|
else:
|
|
with ThreadPoolExecutor(args.parallel) as executor:
|
|
list(
|
|
tqdm(
|
|
executor.map(get_one_answer, list(range(len(questions)))),
|
|
total=len(questions),
|
|
)
|
|
)
|
|
else:
|
|
# Use asyncio
|
|
async def batched_call(batch_size):
|
|
for i in range(0, len(questions), batch_size):
|
|
tasks = []
|
|
for q, c in zip(
|
|
questions[i : i + batch_size], choices[i : i + batch_size]
|
|
):
|
|
tasks.append(call_select(context=few_shot_examples + q, choices=c))
|
|
rets = await asyncio.gather(*tasks)
|
|
for j in range(len(rets)):
|
|
preds[i + j] = rets[j]
|
|
|
|
tic = time.perf_counter()
|
|
asyncio.run(batched_call(batch_size=args.parallel))
|
|
|
|
latency = time.perf_counter() - tic
|
|
|
|
# Compute accuracy
|
|
acc = np.mean(np.array(preds) == np.array(labels))
|
|
print(f"Latency: {latency:.3f}")
|
|
print(f"Accuracy: {acc:.3f}")
|
|
|
|
# Write results
|
|
with open(args.result_file, "a") as fout:
|
|
value = {
|
|
"task": "hellaswag",
|
|
"backend": args.backend,
|
|
"num_gpus": 1,
|
|
"latency": round(latency, 3),
|
|
"accuracy": round(acc, 3),
|
|
"num_requests": args.num_questions,
|
|
"other": {
|
|
"num_questions": args.num_questions,
|
|
"parallel": args.parallel,
|
|
},
|
|
}
|
|
fout.write(json.dumps(value) + "\n")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--num-shots", type=int, default=20)
|
|
parser.add_argument("--data-path", type=str, default="hellaswag_val.jsonl")
|
|
parser.add_argument("--num-questions", type=int, default=200)
|
|
args = add_common_other_args_and_parse(parser)
|
|
main(args)
|