sglang.0.4.8.post1/sglang/benchmark/multi_chain_reasoning/bench_other.py

187 lines
5.9 KiB
Python

import argparse
import ast
import asyncio
import json
import re
import time
from concurrent.futures import ThreadPoolExecutor
import numpy as np
from tqdm import tqdm
from sglang.test.test_utils import add_common_other_args_and_parse, get_call_generate
from sglang.utils import dump_state_text, read_jsonl
INVALID = -9999999
def get_answer_value(answer_str):
answer_str = answer_str.replace(",", "")
numbers = re.findall(r"\d+", answer_str)
if len(numbers) < 1:
return INVALID
try:
return ast.literal_eval(numbers[-1])
except SyntaxError:
return INVALID
prompt_lib = [
"Let us think step by step.",
"Approach this methodically. Let's dissect the problem into smaller, more manageable parts.",
"It's important to proceed step by step, ensuring accuracy at each stage.",
"Take a deep breath and break this down.",
"A little bit of arithmetic and a logical approach will help us quickly arrive at the solution to this problem.",
"I am extremely good at math.",
]
def multi_chain_gsm8k(question, num_chains, call_generate):
s = "Question: " + question + "\n"
# s += call_generate(s + "Answer: " + prompt_lib[0], max_tokens=256,
# stop="Question", temperature=0)
# return s
comps = []
for i in range(num_chains):
comps.append(
call_generate(
s + "Answer: " + prompt_lib[i % num_chains],
max_tokens=256,
temperature=0.3,
stop="Question",
)
)
s += "Answer: To answer this question, here are some possible solutions. "
s += "After considering all of them, I will do a majority vote.\n\n"
for i in range(num_chains):
s += f"Solution {i+1}: " + comps[i].strip() + "\n\n"
s += "\nBy considering the above solutions and doing a majority vote, I think the final answer (a single integer number) is "
s += call_generate(s, max_tokens=16, temperature=0, stop=None)
return s
async def multi_chain_gsm8k_async(question, num_chains, call_generate):
s = "Question: " + question + "\n"
# s += call_generate(s + "Answer: " + prompt_lib[0], max_tokens=256,
# stop="Question", temperature=0)
# return s
comps = []
for i in range(num_chains):
comps.append(
await call_generate(
s + "Answer: " + prompt_lib[i % num_chains],
max_tokens=256,
temperature=0.3,
stop="Question",
)
)
s += "Answer: To answer this question, here are some possible solutions. "
s += "After considering all of them, I will do a majority vote.\n\n"
for i in range(num_chains):
s += f"Solution {i+1}: " + comps[i].strip() + "\n\n"
s += "\nBy considering the above solutions and doing a majority vote, I think the final answer (a single integer number) is "
s += await call_generate(s, max_tokens=16, temperature=0, stop=None)
return s
def main(args):
lines = read_jsonl(args.data_path)
# Construct prompts
k = args.num_shot
questions = []
labels = []
for i in range(len(lines[: args.num_questions])):
questions.append(lines[i]["question"])
labels.append(get_answer_value(lines[i]["answer"]))
assert all(l != INVALID for l in labels)
states = [None] * len(labels)
# Select backend
call_generate = get_call_generate(args)
# Run requests
if args.backend != "lmql":
# Use thread pool
def get_one_answer(i):
answer = multi_chain_gsm8k(questions[i], args.num_chains, call_generate)
states[i] = answer
tic = time.perf_counter()
if args.parallel == 1:
for i in tqdm(range(len(questions))):
get_one_answer(i)
else:
with ThreadPoolExecutor(args.parallel) as executor:
list(
tqdm(
executor.map(get_one_answer, list(range(len(questions)))),
total=len(questions),
)
)
else:
# Use asyncio
async def get_one_answer_asyncio(i):
answer = await multi_chain_gsm8k_async(
questions[i], args.num_chains, call_generate
)
states[i] = answer
tic = time.perf_counter()
loop = asyncio.get_event_loop()
batches = [
list(range(i, min(i + args.parallel, len(questions))))
for i in range(0, len(questions), args.parallel)
]
for bt in tqdm(batches):
tasks = [get_one_answer_asyncio(k) for k in bt]
loop.run_until_complete(asyncio.gather(*tasks))
latency = time.perf_counter() - tic
preds = []
for i in range(len(states)):
preds.append(get_answer_value(states[i]))
# Compute accuracy
acc = np.mean(np.array(preds) == np.array(labels))
invalid = np.mean(np.array(preds) == INVALID)
print(f"Latency: {latency:.3f}")
print(f"Invalid: {invalid:.3f}")
print(f"Accuracy: {acc:.3f}")
# Write results
dump_state_text(f"tmp_output_{args.backend}.txt", states)
with open(args.result_file, "a") as fout:
value = {
"task": "multi_chain_gsm8k",
"backend": args.backend,
"num_gpus": 1,
"latency": round(latency, 3),
"accuracy": round(acc, 3),
"num_requests": args.num_questions,
"other": {
"num_questions": args.num_questions,
"parallel": args.parallel,
},
}
fout.write(json.dumps(value) + "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--num-shot", type=int, default=0)
parser.add_argument("--num-chains", type=int, default=5)
parser.add_argument("--data-path", type=str, default="test.jsonl")
parser.add_argument("--num-questions", type=int, default=50)
args = add_common_other_args_and_parse(parser)
main(args)