sglang.0.4.8.post1/sglang/docs/backend/openai_api_embeddings.ipynb

202 lines
5.4 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# OpenAI APIs - Embedding\n",
"\n",
"SGLang provides OpenAI-compatible APIs to enable a smooth transition from OpenAI services to self-hosted local models.\n",
"A complete reference for the API is available in the [OpenAI API Reference](https://platform.openai.com/docs/guides/embeddings).\n",
"\n",
"This tutorial covers the embedding APIs for embedding models. For a list of the supported models see the [corresponding overview page](https://docs.sglang.ai/supported_models/embedding_models.html)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Launch A Server\n",
"\n",
"Launch the server in your terminal and wait for it to initialize. Remember to add `--is-embedding` to the command."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sglang.test.test_utils import is_in_ci\n",
"\n",
"if is_in_ci():\n",
" from patch import launch_server_cmd\n",
"else:\n",
" from sglang.utils import launch_server_cmd\n",
"\n",
"from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
"\n",
"embedding_process, port = launch_server_cmd(\n",
" \"\"\"\n",
"python3 -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-1.5B-instruct \\\n",
" --host 0.0.0.0 --is-embedding\n",
"\"\"\"\n",
")\n",
"\n",
"wait_for_server(f\"http://localhost:{port}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using cURL"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import subprocess, json\n",
"\n",
"text = \"Once upon a time\"\n",
"\n",
"curl_text = f\"\"\"curl -s http://localhost:{port}/v1/embeddings \\\n",
" -H \"Content-Type: application/json\" \\\n",
" -d '{{\"model\": \"Alibaba-NLP/gte-Qwen2-1.5B-instruct\", \"input\": \"{text}\"}}'\"\"\"\n",
"\n",
"result = subprocess.check_output(curl_text, shell=True)\n",
"\n",
"print(result)\n",
"\n",
"text_embedding = json.loads(result)[\"data\"][0][\"embedding\"]\n",
"\n",
"print_highlight(f\"Text embedding (first 10): {text_embedding[:10]}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using Python Requests"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"\n",
"text = \"Once upon a time\"\n",
"\n",
"response = requests.post(\n",
" f\"http://localhost:{port}/v1/embeddings\",\n",
" json={\"model\": \"Alibaba-NLP/gte-Qwen2-1.5B-instruct\", \"input\": text},\n",
")\n",
"\n",
"text_embedding = response.json()[\"data\"][0][\"embedding\"]\n",
"\n",
"print_highlight(f\"Text embedding (first 10): {text_embedding[:10]}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using OpenAI Python Client"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import openai\n",
"\n",
"client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
"\n",
"# Text embedding example\n",
"response = client.embeddings.create(\n",
" model=\"Alibaba-NLP/gte-Qwen2-1.5B-instruct\",\n",
" input=text,\n",
")\n",
"\n",
"embedding = response.data[0].embedding[:10]\n",
"print_highlight(f\"Text embedding (first 10): {embedding}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using Input IDs\n",
"\n",
"SGLang also supports `input_ids` as input to get the embedding."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import os\n",
"from transformers import AutoTokenizer\n",
"\n",
"os.environ[\"TOKENIZERS_PARALLELISM\"] = \"false\"\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"Alibaba-NLP/gte-Qwen2-1.5B-instruct\")\n",
"input_ids = tokenizer.encode(text)\n",
"\n",
"curl_ids = f\"\"\"curl -s http://localhost:{port}/v1/embeddings \\\n",
" -H \"Content-Type: application/json\" \\\n",
" -d '{{\"model\": \"Alibaba-NLP/gte-Qwen2-1.5B-instruct\", \"input\": {json.dumps(input_ids)}}}'\"\"\"\n",
"\n",
"input_ids_embedding = json.loads(subprocess.check_output(curl_ids, shell=True))[\"data\"][\n",
" 0\n",
"][\"embedding\"]\n",
"\n",
"print_highlight(f\"Input IDs embedding (first 10): {input_ids_embedding[:10]}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"terminate_process(embedding_process)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Multi-Modal Embedding Model\n",
"Please refer to [Multi-Modal Embedding Model](../supported_models/embedding_models.md)"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}