sglang.0.4.8.post1/sglang/examples/runtime/multimodal/llama3_llava_server.py

112 lines
3.5 KiB
Python

"""
Usage:
# Installing latest llava-next: pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
# Installing latest sglang.
# Endpoint Service CLI:
python -m sglang.launch_server --model-path lmms-lab/llama3-llava-next-8b --port=30000
python3 llama3_llava_server.py
Output:
"Friends posing for a fun photo with a life-sized teddy bear, creating a playful and memorable moment."
"""
import argparse
import asyncio
import copy
import json
import aiohttp
import requests
from llava.conversation import conv_llava_llama_3
async def send_request(url, data, delay=0):
await asyncio.sleep(delay)
async with aiohttp.ClientSession() as session:
async with session.post(url, json=data) as resp:
output = await resp.json()
return output
async def test_concurrent(args):
url = f"{args.host}:{args.port}"
prompt = "<image>\nPlease generate caption towards this image."
conv_template = copy.deepcopy(conv_llava_llama_3)
conv_template.append_message(role=conv_template.roles[0], message=prompt)
conv_template.append_message(role=conv_template.roles[1], message=None)
prompt_with_template = conv_template.get_prompt()
response = []
for i in range(1):
response.append(
send_request(
url + "/generate",
{
"text": prompt_with_template,
"image_data": "https://farm4.staticflickr.com/3175/2653711032_804ff86d81_z.jpg",
"sampling_params": {
"max_new_tokens": 1024,
"temperature": 0,
"top_p": 1.0,
"presence_penalty": 2,
"frequency_penalty": 2,
"stop": "<|eot_id|>",
},
},
)
)
rets = await asyncio.gather(*response)
for ret in rets:
print(ret["text"])
def test_streaming(args):
url = f"{args.host}:{args.port}"
prompt = "<image>\nPlease generate caption towards this image."
conv_template = copy.deepcopy(conv_llava_llama_3)
conv_template.append_message(role=conv_template.roles[0], message=prompt)
conv_template.append_message(role=conv_template.roles[1], message=None)
prompt_with_template = conv_template.get_prompt()
pload = {
"text": prompt_with_template,
"sampling_params": {
"max_new_tokens": 1024,
"temperature": 0,
"top_p": 1.0,
"presence_penalty": 2,
"frequency_penalty": 2,
"stop": "<|eot_id|>",
},
"image_data": "https://farm4.staticflickr.com/3175/2653711032_804ff86d81_z.jpg",
"stream": True,
}
response = requests.post(
url + "/generate",
json=pload,
stream=True,
)
prev = 0
for chunk in response.iter_lines(decode_unicode=False):
chunk = chunk.decode("utf-8")
if chunk and chunk.startswith("data:"):
if chunk == "data: [DONE]":
break
data = json.loads(chunk[5:].strip("\n"))
output = data["text"].strip()
print(output[prev:], end="", flush=True)
prev = len(output)
print("")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="http://127.0.0.1")
parser.add_argument("--port", type=int, default=30000)
args = parser.parse_args()
asyncio.run(test_concurrent(args))
test_streaming(args)