sglang.0.4.8.post1/sglang/sgl-kernel/benchmark/bench_moe_fused_gate.py

75 lines
2.1 KiB
Python

import itertools
import math
import torch
import triton
import triton.language as tl
from sgl_kernel import moe_fused_gate
from sglang.srt.layers.moe.topk import biased_grouped_topk
def biased_grouped_topk_org(scores, bias, num_expert_group, topk_group, topk):
return biased_grouped_topk(
scores,
scores,
bias,
topk=topk,
renormalize=True,
num_expert_group=num_expert_group,
topk_group=topk_group,
)
def biased_grouped_topk_org_kernel(scores, bias, num_expert_group, topk_group, topk):
return moe_fused_gate(scores, bias, num_expert_group, topk_group, topk)
seq_length_range = [5000, 10000, 15000, 20000, 25000, 30000, 35000, 40000]
configs = [(sq,) for sq in seq_length_range]
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["seq_length"],
x_vals=[list(_) for _ in configs],
line_arg="provider",
line_vals=["original", "kernel"],
line_names=["Original", "SGL Kernel"],
styles=[("blue", "-"), ("red", "-")],
ylabel="us",
plot_name="moe-fused-gate-performance",
args={},
)
)
def benchmark(seq_length, provider):
dtype = torch.bfloat16
device = torch.device("cuda")
num_experts, num_expert_group, topk_group, topk = 256, 8, 4, 8
scores = torch.randn((seq_length, num_experts), device=device, dtype=dtype)
bias = torch.rand(num_experts, device=device, dtype=dtype)
quantiles = [0.5, 0.2, 0.8]
if provider == "original":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: biased_grouped_topk_org(
scores.clone(), bias.clone(), num_expert_group, topk_group, topk
),
quantiles=quantiles,
)
elif provider == "kernel":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: biased_grouped_topk_org_kernel(
scores.clone(), bias.clone(), num_expert_group, topk_group, topk
),
quantiles=quantiles,
)
return 1000 * ms, 1000 * max_ms, 1000 * min_ms
if __name__ == "__main__":
benchmark.run(print_data=True)