sglang.0.4.8.post1/sglang/sgl-kernel/csrc/attention/cascade.cu

56 lines
1.7 KiB
Plaintext

// Adapted from
// https://github.com/flashinfer-ai/flashinfer/blob/55576c626421b5ee7e7ebe74afd26465c8ae863f/csrc/cascade.cu
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <flashinfer/attention/cascade.cuh>
#include "pytorch_extension_utils.h"
using namespace flashinfer;
void merge_state(
at::Tensor v_a, at::Tensor s_a, at::Tensor v_b, at::Tensor s_b, at::Tensor v_merged, at::Tensor s_merged) {
CHECK_INPUT(v_a);
CHECK_INPUT(s_a);
CHECK_INPUT(v_b);
CHECK_INPUT(s_b);
auto device = v_a.device();
CHECK_EQ(s_a.device(), device);
CHECK_EQ(v_b.device(), device);
CHECK_EQ(s_b.device(), device);
CHECK_DIM(3, v_a);
CHECK_DIM(2, s_a);
CHECK_DIM(3, v_b);
CHECK_DIM(2, s_b);
CHECK_SHAPE(v_a, v_b);
CHECK_SHAPE(s_a, s_b);
CHECK_EQ(v_a.size(0), s_a.size(0));
CHECK_EQ(v_a.size(1), s_b.size(1));
unsigned int seq_len = v_a.size(0);
unsigned int num_heads = v_a.size(1);
unsigned int head_dim = v_a.size(2);
const c10::cuda::OptionalCUDAGuard device_guard(v_a.device());
auto stream = at::cuda::getCurrentCUDAStream();
bool success = DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(v_a.scalar_type(), c_type, [&] {
cudaError_t status = MergeState(
static_cast<c_type*>(v_a.data_ptr()),
static_cast<float*>(s_a.data_ptr()),
static_cast<c_type*>(v_b.data_ptr()),
static_cast<float*>(s_b.data_ptr()),
static_cast<c_type*>(v_merged.data_ptr()),
static_cast<float*>(s_merged.data_ptr()),
seq_len,
num_heads,
head_dim,
stream);
TORCH_CHECK(status == cudaSuccess, "MergeState kernel launch failed: ", cudaGetErrorString(status));
return true;
});
TORCH_CHECK(success, "MergeState kernel launch failed: unsupported data type");
}