sglang.0.4.8.post1/sglang/sgl-kernel/csrc/attention/lightning_attention_decode_...

155 lines
5.2 KiB
Plaintext

/* Copyright 2025 SGLang Team. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <torch/all.h>
#define THREADS_PER_BLOCK 128
template <typename T>
__global__ void lightning_attention_decode_kernel(
const T* __restrict__ q, // [b, h, 1, d]
const T* __restrict__ k, // [b, h, 1, d]
const T* __restrict__ v, // [b, h, 1, e]
const float* __restrict__ past_kv, // [b, h, d, e]
const float* __restrict__ slope, // [h, 1, 1]
T* __restrict__ output, // [b, h, 1, e]
float* __restrict__ new_kv, // [b, h, d, e]
const int batch_size,
const int num_heads,
const int qk_dim,
const int v_dim) {
extern __shared__ char smem[];
T* __restrict__ q_shared = reinterpret_cast<T*>(smem);
T* __restrict__ k_shared = reinterpret_cast<T*>(smem + qk_dim * sizeof(T));
T* __restrict__ v_shared = reinterpret_cast<T*>(smem + 2 * qk_dim * sizeof(T));
float* __restrict__ new_kv_shared = reinterpret_cast<float*>(smem + (2 * qk_dim + v_dim) * sizeof(T));
T* __restrict__ output_shared =
reinterpret_cast<T*>(smem + (2 * qk_dim + v_dim) * sizeof(T) + qk_dim * (v_dim + 1) * sizeof(float));
const int32_t tid = threadIdx.x;
const int32_t current_head = blockIdx.x;
const int32_t b = current_head / num_heads;
const int32_t h = current_head % num_heads;
if (b >= batch_size) return;
const int32_t qk_offset = b * num_heads * qk_dim + h * qk_dim;
const int32_t v_offset = b * num_heads * v_dim + h * v_dim;
const int32_t kv_offset = b * num_heads * qk_dim * v_dim + h * qk_dim * v_dim;
// Load q, k, v into shared memory
for (int d = tid; d < qk_dim; d += blockDim.x) {
q_shared[d] = q[qk_offset + d];
k_shared[d] = k[qk_offset + d];
}
for (int e = tid; e < v_dim; e += blockDim.x) {
v_shared[e] = v[v_offset + e];
}
__syncthreads();
const float ratio = expf(-1.0f * slope[h]);
// Compute new_kv
for (int d = tid; d < qk_dim; d += blockDim.x) {
const T k_val = k_shared[d];
for (int e = 0; e < v_dim; ++e) {
const int past_kv_idx = kv_offset + d * v_dim + e;
const T v_val = v_shared[e];
const float new_val = ratio * past_kv[past_kv_idx] + k_val * v_val;
const int shared_idx = d * (v_dim + 1) + e;
new_kv_shared[shared_idx] = new_val;
}
}
__syncthreads();
// Store new_kv to global memory
for (int idx = tid; idx < qk_dim * v_dim; idx += blockDim.x) {
const int d = idx / v_dim;
const int e = idx % v_dim;
const int shared_idx = d * (v_dim + 1) + e;
const int global_idx = kv_offset + idx;
new_kv[global_idx] = new_kv_shared[shared_idx];
}
__syncthreads();
// Compute output
for (int e = tid; e < v_dim; e += blockDim.x) {
float sum = 0.0f;
for (int d = 0; d < qk_dim; ++d) {
const int shared_idx = d * (v_dim + 1) + e;
sum += q_shared[d] * new_kv_shared[shared_idx];
}
output_shared[e] = static_cast<T>(sum);
}
__syncthreads();
// Store output to global memory
if (tid == 0) {
for (int e = 0; e < v_dim; ++e) {
output[v_offset + e] = output_shared[e];
}
}
}
void lightning_attention_decode(
const torch::Tensor& q,
const torch::Tensor& k,
const torch::Tensor& v,
const torch::Tensor& past_kv,
const torch::Tensor& slope,
torch::Tensor output,
torch::Tensor new_kv) {
TORCH_CHECK(q.is_contiguous(), "q must be contiguous");
TORCH_CHECK(k.is_contiguous(), "k must be contiguous");
TORCH_CHECK(v.is_contiguous(), "v must be contiguous");
TORCH_CHECK(past_kv.is_contiguous(), "past_kv must be contiguous");
auto batch_size = q.size(0);
auto num_heads = q.size(1);
auto qk_dim = q.size(3);
auto v_dim = v.size(3);
dim3 block(THREADS_PER_BLOCK);
dim3 grid(batch_size * num_heads);
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half, at::ScalarType::BFloat16, q.scalar_type(), "lightning_attention_decode_kernel", ([&] {
size_t smem_size = (2 * qk_dim + 2 * v_dim) * sizeof(scalar_t) + qk_dim * (v_dim + 1) * sizeof(float);
lightning_attention_decode_kernel<scalar_t><<<grid, block, smem_size, stream>>>(
q.data_ptr<scalar_t>(),
k.data_ptr<scalar_t>(),
v.data_ptr<scalar_t>(),
past_kv.data_ptr<float>(),
slope.data_ptr<float>(),
output.data_ptr<scalar_t>(),
new_kv.data_ptr<float>(),
batch_size,
num_heads,
qk_dim,
v_dim);
}));
}