sglang.0.4.8.post1/sglang/sgl-kernel/csrc/cpu/extend.cpp

720 lines
24 KiB
C++

#include "common.h"
#include "gemm.h"
#include "vec.h"
namespace {
// [NOTE]: extend attention for CPU
// 1. tune BLOCK_M and BLOCK_N
// 2. can handle non-contiguous k_exttend and v_extend
// 3. computes attention for prefix and extend separately
// 4. TODO: vectorize `pack_vnni` and `pack_vnni2`
//
template <typename index_t>
inline index_t get_index(index_t* ind, int i) {
return (ind == nullptr) ? (index_t)i : ind[i];
}
#if defined(CPU_CAPABILITY_AVX512)
// key: from [N, 32] to [32/2, N, 2]
template <typename scalar_t, typename index_t>
inline void pack_vnni_Nx32(
scalar_t* __restrict__ dst,
const scalar_t* __restrict__ src,
const index_t* __restrict__ ind,
int N,
int ld_src,
int ld_dst) {
__m512i vinputs[16];
int n = 0;
for (; n < N; ++n) {
index_t index = get_index(ind, n);
vinputs[n] = _mm512_loadu_si512(src + index * ld_src);
}
// padding with zero to avoid uninitialized vectors
for (; n < 16; ++n) {
vinputs[n] = _mm512_set1_epi32(0);
}
// pack key
transpose_16x16_32bit(vinputs);
const __mmask16 vmask = (1 << N) - 1;
for (int k = 0; k < 16; ++k) {
_mm512_mask_storeu_epi32(dst + k * ld_dst * 2, vmask, vinputs[k]);
}
}
// value: from [K, 32] to [K/2, 32, 2]
template <typename scalar_t, typename index_t>
inline void pack_vnni_Kx32(
scalar_t* __restrict__ dst,
const scalar_t* __restrict__ src,
const index_t* __restrict__ ind,
int K,
int ld_src,
int ld_dst) {
__m512i vinputs[2];
int k = 0;
for (; k < K; ++k) {
index_t index = get_index(ind, k);
vinputs[k] = _mm512_loadu_si512(src + index * ld_src);
}
// padding with zero to avoid uninitialized vectors
for (; k < 2; ++k) {
vinputs[k] = _mm512_set1_epi32(0);
}
// pack value
__m512i d0, d1;
std::tie(d0, d1) = transpose_2x32_16bit(vinputs[0], vinputs[1]);
_mm512_storeu_si512(dst + 0 * ld_dst * 2, d0);
_mm512_storeu_si512(dst + 0 * ld_dst * 2 + 32, d1);
}
#endif
// convert to vnni format
// from [N, K/2, 2] to [K/2, N, 2] for bfloat16 and float16
template <typename scalar_t, typename index_t>
void pack_vnni(
scalar_t* __restrict__ dst,
const scalar_t* __restrict__ src,
const index_t* __restrict__ ind,
int N,
int K,
int ld_src,
int ld_dst) {
#if defined(CPU_CAPABILITY_AVX512)
const int NB = div_up(N, 16);
const int KB = K / 32; // no remainder
const bool is_indexed = ind != nullptr;
for (int nb = 0; nb < NB; ++nb) {
for (int kb = 0; kb < KB; ++kb) {
// handle 16x512bits each block
int nb_size = std::min(N - nb * 16, 16);
pack_vnni_Nx32<scalar_t, index_t>(
/* dst */ dst + ((kb * 32) >> 1) * ld_dst * 2 + nb * 16 * 2,
/* src */ src + kb * 32 + (is_indexed ? 0 : nb * 16 * ld_src),
/* ind */ is_indexed ? ind + nb * 16 : nullptr,
/* N */ nb_size,
/* ld_src */ ld_src,
/* ld_dst */ ld_dst);
}
}
#else
for (int n = 0; n < N; ++n) {
index_t index = get_index(ind, n);
for (int k = 0; k < K / 2; ++k) {
for (int d = 0; d < 2; ++d) {
dst[k * ld_dst * 2 + n * 2 + d] = src[index * ld_src + k * 2 + d];
}
}
}
#endif
}
// convert to vnni format
// from [K/2, 2, N] to [K/2, N, 2] for bfloat16 and float16
template <typename scalar_t, typename index_t>
void pack_vnni2(
scalar_t* __restrict__ dst,
const scalar_t* __restrict__ src,
const index_t* __restrict__ ind,
int K,
int N,
int ld_src,
int ld_dst) {
#if defined(CPU_CAPABILITY_AVX512)
const int KB = div_up(K, 2);
const int NB = N / 32; // no remainder
const bool is_indexed = ind != nullptr;
for (int kb = 0; kb < KB; ++kb) {
for (int nb = 0; nb < NB; ++nb) {
// handle 2x512bits each block
int kb_size = std::min(K - kb * 2, 2);
pack_vnni_Kx32<scalar_t, index_t>(
/* dst */ dst + ((kb * 2) >> 1) * ld_dst * 2 + nb * 32 * 2,
/* src */ src + (is_indexed ? 0 : kb * 2 * ld_src) + nb * 32,
/* ind */ is_indexed ? ind + kb * 2 : nullptr,
/* K */ kb_size,
/* ld_src */ ld_src,
/* ld_dst */ ld_dst);
}
}
#else
int k = 0;
for (; k < (K >> 1) * 2; k += 2) {
index_t index0 = get_index(ind, k + 0);
index_t index1 = get_index(ind, k + 1);
for (int n = 0; n < N; ++n) {
dst[(k >> 1) * ld_dst * 2 + n * 2 + 0] = src[index0 * ld_src + n];
dst[(k >> 1) * ld_dst * 2 + n * 2 + 1] = src[index1 * ld_src + n];
}
}
if (K % 2 != 0) {
index_t index = get_index(ind, K - 1);
for (int n = 0; n < N; ++n) {
dst[(K >> 1) * ld_dst * 2 + n * 2 + 0] = src[index * ld_src + n];
dst[(K >> 1) * ld_dst * 2 + n * 2 + 1] = 0;
}
k += 2;
}
#endif
}
template <typename scalar_t>
inline void fill_stub(scalar_t* __restrict__ out, float val, int size) {
using Vec = at::vec::Vectorized<scalar_t>;
constexpr int kVecSize = Vec::size();
const Vec data_vec = Vec(static_cast<scalar_t>(val));
int d = 0;
#pragma GCC unroll 4
for (; d <= size - kVecSize; d += kVecSize) {
data_vec.store(out + d);
}
if (size - d > 0) {
data_vec.store(out + d, size - d);
}
}
template <typename scalar_t, int BLOCK_N>
inline void copy_stub(scalar_t* __restrict__ out, const float* __restrict__ input) {
static_assert(BLOCK_N % 32 == 0);
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
constexpr int COLS = BLOCK_N / 16;
auto store = [&](auto i) {
constexpr int col = i % COLS;
// for COLS = 2, 4 use 512bit store
if constexpr (col % 2 == 0) {
fVec a_fvec0 = fVec::loadu(input + col * 16);
fVec a_fvec1 = fVec::loadu(input + col * 16 + 16);
bVec out_bvec = convert_from_float_ext<scalar_t>(a_fvec0, a_fvec1);
out_bvec.store(out + col * 16);
}
};
Unroll<COLS>{}(store);
}
template <typename scalar_t>
inline void copy_stub(scalar_t* __restrict__ out, const float* __restrict__ acc, float s, int size) {
using bVec = at::vec::Vectorized<scalar_t>;
using fVec = at::vec::Vectorized<float>;
constexpr int kVecSize = bVec::size();
const fVec s_fvec = fVec(s);
int d = 0;
#pragma GCC unroll 4
for (; d <= size - kVecSize; d += kVecSize) {
fVec a_fvec0 = fVec::loadu(acc + d) * s_fvec;
fVec a_fvec1 = fVec::loadu(acc + d + fVec::size()) * s_fvec;
bVec out_bvec = convert_from_float_ext<scalar_t>(a_fvec0, a_fvec1);
out_bvec.store(out + d);
}
for (; d < size; ++d) {
out[d] = static_cast<scalar_t>(acc[d] * s);
}
}
template <typename scalar_t, typename index_t, int BLOCK_M, int BLOCK_N>
void extend_attention_kernel_impl(
scalar_t* __restrict__ o_extend,
const scalar_t* __restrict__ q_extend,
const scalar_t* __restrict__ k_extend,
const scalar_t* __restrict__ v_extend,
const scalar_t* __restrict__ k_buffer,
const scalar_t* __restrict__ v_buffer,
const index_t* __restrict__ req_to_token,
const int64_t* __restrict__ req_pool_indices,
const int64_t* __restrict__ seq_lens,
const index_t* __restrict__ extend_seq_lens,
const index_t* __restrict__ extend_start_loc,
const void* __restrict__ buffer,
int batches,
int num_heads,
int num_heads_kv,
int head_size,
int head_size_v,
int ke_strideN,
int ke_strideH,
int ve_strideN,
int ve_strideH,
int k_strideN,
int k_strideH,
int v_strideN,
int v_strideH,
float scaling,
float logit_cap,
int max_num_reqs,
int max_context_len,
int max_total_num_tokens,
int max_len_extend,
int buffer_size_per_thread,
bool is_prefix_skipped) {
using Vec = at::vec::Vectorized<float>;
// strides
const int q_strideM = num_heads * head_size;
const int q_strideH = head_size;
const int o_strideM = num_heads * head_size_v;
const int o_strideH = head_size_v;
// we use same buffer for packed key and value
const int ldb_tmp = std::max(head_size, head_size_v);
const bool has_logit_cap = logit_cap > 0;
float rlogit_cap = has_logit_cap ? 1 / logit_cap : 0.f;
const int num_groups = num_heads / num_heads_kv;
TORCH_CHECK(num_groups * num_heads_kv == num_heads);
// number of blocks along M
int MB = div_up(max_len_extend, BLOCK_M);
// parallel on [batches, num_heads, BM]
at::parallel_for(0, batches * num_heads * MB, 0, [&](int begin, int end) {
int bs{0}, head_id{0}, mb{0};
data_index_init(begin, bs, batches, head_id, num_heads, mb, MB);
int tid = at::get_thread_num();
// s_i and s_delta: [BLOCK_M, BLOCK_N]
float* __restrict__ s_i = reinterpret_cast<float*>((char*)(buffer) + tid * buffer_size_per_thread);
float* __restrict__ s_delta = s_i;
// v_prime: [BLOCK_M, head_size_v]
float* __restrict__ v_prime = s_i + BLOCK_M * BLOCK_N;
// s_delta2: [BLOCK_M, BLOCK_N]; copy of s_delta in scalar_t
scalar_t* __restrict__ s_delta2 = reinterpret_cast<scalar_t*>(v_prime + BLOCK_N * head_size_v);
// Btmp: [BLOCK_N, max(head_size, head_size_v)]
scalar_t* __restrict__ Btmp = s_delta2 + BLOCK_M * BLOCK_N;
// init Btmp just once for each thread to prevent NaN
fill_stub(Btmp, 0.f, BLOCK_N * ldb_tmp);
alignas(64) float s_prime[BLOCK_M];
alignas(64) float m_prime[BLOCK_M];
for (int i = begin; i < end; ++i) {
// seq_len = prefix + extend
int head_kv_id = head_id / num_groups;
int seq_len = seq_lens[bs];
int seq_len_extend = extend_seq_lens[bs];
int seq_len_prefix = seq_len - seq_len_extend;
int seq_extend_start_loc = extend_start_loc[bs];
int req_pool_id = req_pool_indices[bs];
TORCH_CHECK(seq_len_prefix >= 0, "prefix len < 0!");
TORCH_CHECK(seq_len <= max_context_len, "seq_len out of scope!");
TORCH_CHECK(req_pool_id < max_num_reqs, "req_pool_id out of scope!");
if (is_prefix_skipped) {
TORCH_CHECK(seq_len_prefix == 0, "extend attention: expect seq_len_prefix to be 0, got ", seq_len_prefix);
}
// offset and size in MB
int m = mb * BLOCK_N;
int m_size = std::min(BLOCK_M, seq_len_extend - m);
if (m_size <= 0) {
data_index_step(bs, batches, head_id, num_heads, mb, MB);
continue;
}
// get query
const scalar_t* __restrict__ q_ptr = q_extend + (seq_extend_start_loc + m) * q_strideM + head_id * q_strideH;
// init v', s' and m'
fill_stub(v_prime, 0.f, m_size * head_size_v);
fill_stub(s_prime, 0.f, m_size);
fill_stub(m_prime, -std::numeric_limits<scalar_t>::infinity(), m_size);
// stage 1: compute scores with prefix
for (int n = 0; n < seq_len_prefix; n += BLOCK_N) {
int n_size = std::min(BLOCK_N, seq_len_prefix - n);
// `n_size` is K in 2nd gemm, pad to TILE_K;
const int padded_n_size = div_up(n_size, TILE_K) * TILE_K;
// get key and pack
pack_vnni<scalar_t, index_t>(
/* dst */ Btmp,
/* src */ k_buffer + head_kv_id * k_strideH,
/* ind */ req_to_token + req_pool_id * max_context_len + n,
/* N */ n_size,
/* K */ head_size,
/* ld_src */ k_strideN,
/* ld_dst */ BLOCK_N);
// calculate s_i <- Q @ K
at::native::cpublas::brgemm(
/* M */ m_size,
/* N */ n_size,
/* K */ head_size,
/* lda */ q_strideM,
/* ldb */ BLOCK_N,
/* ldc */ BLOCK_N,
/* add_C */ false,
/* A */ q_ptr,
/* B */ Btmp,
/* C */ s_i);
const Vec scale_vec = Vec(scaling);
for (int row = 0; row < m_size; ++row) {
// s_i <- s_i * scale
at::vec::map<float>(
[scale_vec](Vec x) { return x * scale_vec; }, s_i + row * BLOCK_N, s_i + row * BLOCK_N, n_size);
// TODO: `tanh` from torch uses sleef u10, going to be slow
if (has_logit_cap) {
at::vec::map<float>(
[logit_cap, rlogit_cap](Vec x) { return Vec(logit_cap) * (x * Vec(rlogit_cap)).tanh(); },
s_i + row * BLOCK_N,
s_i + row * BLOCK_N,
n_size);
}
// m_i: max value per row
float m_i = at::vec::reduce_all<float>(
[](Vec& x, Vec& y) { return at::vec::maximum(x, y); }, s_i + row * BLOCK_N, n_size);
m_i = std::max(m_i, m_prime[row]);
// m_delta <- exp(m' - m_i)
float m_delta = std::exp(m_prime[row] - m_i);
// s_delta <- exp(s_i - m_i)
at::vec::map<float>(
[m_i](Vec x) { return (x - Vec(m_i)).exp_u20(); }, s_delta + row * BLOCK_N, s_i + row * BLOCK_N, n_size);
// s' <- s' * m_delta + sum(s_delta)
s_prime[row] *= m_delta;
s_prime[row] +=
at::vec::reduce_all<float>([](Vec& x, Vec& y) { return x + y; }, s_delta + row * BLOCK_N, n_size);
m_prime[row] = m_i;
// v' <- v' * m_delta
at::vec::map<float>(
[m_delta](Vec x) { return x * Vec(m_delta); },
v_prime + row * head_size_v,
v_prime + row * head_size_v,
head_size_v);
// pad s_delta with 0 first and then convert to scalar_t
fill_stub(s_delta + row * BLOCK_N + n_size, 0.f, padded_n_size - n_size);
copy_stub<scalar_t, BLOCK_N>(s_delta2 + row * BLOCK_N, s_delta + row * BLOCK_N);
}
// get value and pack
pack_vnni2<scalar_t, index_t>(
/* dst */ Btmp,
/* src */ v_buffer + head_kv_id * v_strideH,
/* ind */ req_to_token + req_pool_id * max_context_len + n,
/* K */ n_size,
/* N */ head_size_v,
/* ld_src */ v_strideN,
/* ld_dst */ head_size_v);
// calculate V' <- s_delta @ V + V'
at::native::cpublas::brgemm(
/* M */ m_size,
/* N */ head_size_v,
/* K */ padded_n_size, // n_size
/* lda */ BLOCK_N,
/* ldb */ head_size_v,
/* ldc */ head_size_v,
/* add_C */ true,
/* A */ s_delta2,
/* B */ Btmp,
/* C */ v_prime);
} // loop with seq_len_prefix
// stage 2: compute the triangle part
int num_keys = std::min(seq_len_extend, m + BLOCK_M);
for (int n = 0; n < num_keys; n += BLOCK_N) {
int n_size = std::min(BLOCK_N, num_keys - n);
// `n_size` is K in 2nd gemm, pad to TILE_K;
const int padded_n_size = div_up(n_size, TILE_K) * TILE_K;
// get key and pack
pack_vnni<scalar_t, index_t>(
/* dst */ Btmp,
/* src */ k_extend + (seq_extend_start_loc + n) * ke_strideN + head_kv_id * ke_strideH,
/* ind */ nullptr,
/* N */ n_size,
/* K */ head_size,
/* ld_src */ ke_strideN,
/* ld_dst */ BLOCK_N);
// calculate s_i <- Q @ K
at::native::cpublas::brgemm(
/* M */ m_size,
/* N */ n_size,
/* K */ head_size,
/* lda */ q_strideM,
/* ldb */ BLOCK_N,
/* ldc */ BLOCK_N,
/* add_C */ false,
/* A */ q_ptr,
/* B */ Btmp,
/* C */ s_i);
// apply causal mask
if (num_keys - n <= BLOCK_N) {
for (int row = 0; row < m_size; ++row) {
int last_col = m + row - n;
// fill [last_col + 1, n_size) to -inf
float* row_ptr = s_i + row * BLOCK_N;
fill_stub(row_ptr + last_col + 1, -std::numeric_limits<float>::infinity(), n_size - last_col - 1);
}
}
const Vec scale_vec = Vec(scaling);
for (int row = 0; row < m_size; ++row) {
// s_i <- s_i * scale
at::vec::map<float>(
[scale_vec](Vec x) { return x * scale_vec; }, s_i + row * BLOCK_N, s_i + row * BLOCK_N, n_size);
// TODO: `tanh` from torch uses sleef u10, going to be slow
if (has_logit_cap) {
at::vec::map<float>(
[logit_cap, rlogit_cap](Vec x) { return Vec(logit_cap) * (x * Vec(rlogit_cap)).tanh(); },
s_i + row * BLOCK_N,
s_i + row * BLOCK_N,
n_size);
}
// m_i: max value per row
float m_i = at::vec::reduce_all<float>(
[](Vec& x, Vec& y) { return at::vec::maximum(x, y); }, s_i + row * BLOCK_N, n_size);
m_i = std::max(m_i, m_prime[row]);
// m_delta <- exp(m' - m_i)
float m_delta = std::exp(m_prime[row] - m_i);
// s_delta <- exp(s_i - m_i)
at::vec::map<float>(
[m_i](Vec x) { return (x - Vec(m_i)).exp_u20(); }, s_delta + row * BLOCK_N, s_i + row * BLOCK_N, n_size);
// s' <- s' * m_delta + sum(s_delta)
s_prime[row] *= m_delta;
s_prime[row] +=
at::vec::reduce_all<float>([](Vec& x, Vec& y) { return x + y; }, s_delta + row * BLOCK_N, n_size);
m_prime[row] = m_i;
// v' <- v' * m_delta
at::vec::map<float>(
[m_delta](Vec x) { return x * Vec(m_delta); },
v_prime + row * head_size_v,
v_prime + row * head_size_v,
head_size_v);
// pad s_delta with 0 first and then convert to scalar_t
fill_stub(s_delta + row * BLOCK_N + n_size, 0.f, padded_n_size - n_size);
copy_stub<scalar_t, BLOCK_N>(s_delta2 + row * BLOCK_N, s_delta + row * BLOCK_N);
}
// get value and pack
pack_vnni2<scalar_t, index_t>(
/* dst */ Btmp,
/* src */ v_extend + (seq_extend_start_loc + n) * ve_strideN + head_kv_id * ve_strideH,
/* ind */ nullptr,
/* K */ n_size,
/* N */ head_size_v,
/* ld_src */ ve_strideN,
/* ld_dst */ head_size_v);
// calculate V' <- s_delta @ V + V'
at::native::cpublas::brgemm(
/* M */ m_size,
/* N */ head_size_v,
/* K */ padded_n_size, // n_size
/* lda */ BLOCK_N,
/* ldb */ head_size_v,
/* ldc */ head_size_v,
/* add_C */ true,
/* A */ s_delta2,
/* B */ Btmp,
/* C */ v_prime);
} // loop with seq_len_extend
scalar_t* __restrict__ out_ptr = o_extend + (seq_extend_start_loc + m) * o_strideM + head_id * o_strideH;
for (int row = 0; row < m_size; ++row) {
float s = 1 / s_prime[row];
copy_stub<scalar_t>(out_ptr + row * o_strideM, v_prime + row * head_size_v, s, head_size_v);
}
// move to the next index
data_index_step(bs, batches, head_id, num_heads, mb, MB);
}
at::native::cpublas::brgemm_release();
});
}
} // anonymous namespace
// q_extend, k_extend, v_extend, o_extend: contiguous tensors
// k_buffer, v_buffer: (prefix + extend) tensors in mem_manager
//
// q_extend: [num_tokens, num_heads, head_size]
// k_extend: [num_extend_tokens, num_heads, head_size]
// v_extend: [num_extend_tokens, num_heads, head_size]
// o_extend: [num_tokens, num_heads, head_size]
// k_buffer: [max_total_num_tokens, num_heads, head_size]
// v_buffer: [max_total_num_tokens, num_heads, head_size]
// req_to_token: [max_num_reqs, max_context_len] int32 or int64
// req_pool_indices: [num_seqs] int64
// seq_lens: [num_seqs] int64
// extend_seq_lens: [num_seqs]
// extend_start_loc: [num_seqs]
//
void extend_attention_cpu(
at::Tensor& q_extend,
at::Tensor& k_extend,
at::Tensor& v_extend,
at::Tensor& o_extend,
at::Tensor& k_buffer,
at::Tensor& v_buffer,
at::Tensor& req_to_token,
at::Tensor& req_pool_indices,
at::Tensor& seq_lens,
at::Tensor& extend_seq_lens,
at::Tensor& extend_start_loc,
int64_t max_len_extend,
double sm_scale,
double logit_cap) {
RECORD_FUNCTION(
"sgl-kernel::extend_attention_cpu",
std::vector<c10::IValue>(
{q_extend,
k_extend,
v_extend,
o_extend,
k_buffer,
v_buffer,
req_to_token,
req_pool_indices,
seq_lens,
extend_seq_lens,
extend_start_loc}));
CHECK_INPUT(q_extend);
CHECK_INPUT(o_extend);
CHECK_LAST_DIM_CONTIGUOUS_INPUT(k_extend);
CHECK_LAST_DIM_CONTIGUOUS_INPUT(v_extend);
CHECK_LAST_DIM_CONTIGUOUS_INPUT(k_buffer);
CHECK_LAST_DIM_CONTIGUOUS_INPUT(v_buffer);
int num_seqs = seq_lens.size(0);
int max_num_reqs = req_to_token.size(0);
int max_context_len = req_to_token.size(1);
int max_total_num_tokens = k_buffer.size(0);
int num_heads = q_extend.size(1);
int num_heads_kv = k_extend.size(1);
int head_size = q_extend.size(2);
int head_size_v = v_extend.size(2);
// strides for k_extend and v_extend
int ke_strideN = k_extend.stride(0);
int ke_strideH = k_extend.stride(1);
int ve_strideN = v_extend.stride(0);
int ve_strideH = v_extend.stride(1);
// strides for k_buffer and v_buffer
int k_strideN = k_buffer.stride(0);
int k_strideH = k_buffer.stride(1);
int v_strideN = v_buffer.stride(0);
int v_strideH = v_buffer.stride(1);
// check sizes
CHECK_EQ(req_pool_indices.size(0), num_seqs);
CHECK_EQ(extend_seq_lens.size(0), num_seqs);
CHECK_EQ(extend_start_loc.size(0), num_seqs);
CHECK_EQ(v_extend.size(1), num_heads_kv);
CHECK_EQ(k_buffer.size(1), v_buffer.size(1));
// MLA will skip prefix part
const bool is_prefix_skipped = k_buffer.size(1) != num_heads_kv;
// check index data types
const auto index_dtype = req_to_token.scalar_type();
TORCH_CHECK(
index_dtype == at::kInt || index_dtype == at::kLong,
"extend: expect req_to_token to be int32 or int64, got ",
index_dtype);
TORCH_CHECK(seq_lens.scalar_type() == at::kLong, "extend: expect req_lens to be int64, got ", seq_lens.scalar_type());
TORCH_CHECK(
req_pool_indices.scalar_type() == at::kLong,
"extend: expect req_pool_indices to be int64, got ",
req_pool_indices.scalar_type());
TORCH_CHECK(
extend_seq_lens.scalar_type() == index_dtype && extend_start_loc.scalar_type() == index_dtype,
"extend: expect extend_seq_lens and extend_start_loc to have same dtype as req_to_token.");
// D and DV need to be 32x as we transpose by 512-bit
TORCH_CHECK(head_size % 32 == 0, "invalid head_size ", head_size);
TORCH_CHECK(head_size_v % 32 == 0, "invalid head_size_v ", head_size_v);
// block size for query seq length
constexpr int BLOCK_M = 32;
// block size for key/value seq length
constexpr int BLOCK_N = 32;
const int size_per_thread =
/* s_i */ BLOCK_M * BLOCK_N * sizeof(float) +
/* v_prime */ BLOCK_M * head_size_v * sizeof(float) +
/* s_delta */ BLOCK_M * BLOCK_N * sizeof(uint16_t) +
/* Btmp */ BLOCK_N * std::max(head_size, head_size_v) * sizeof(uint16_t);
int num_threads = at::get_num_threads();
auto buffer = at::empty({num_threads, size_per_thread}, q_extend.options().dtype(at::kChar));
AT_DISPATCH_REDUCED_FLOATING_TYPES(q_extend.scalar_type(), "extend_attention_kernel", [&] {
AT_DISPATCH_INDEX_TYPES(index_dtype, "extend_attention_indices", [&] {
extend_attention_kernel_impl<scalar_t, index_t, BLOCK_M, BLOCK_N>(
o_extend.data_ptr<scalar_t>(),
q_extend.data_ptr<scalar_t>(),
k_extend.data_ptr<scalar_t>(),
v_extend.data_ptr<scalar_t>(),
k_buffer.data_ptr<scalar_t>(),
v_buffer.data_ptr<scalar_t>(),
req_to_token.data_ptr<index_t>(),
req_pool_indices.data_ptr<int64_t>(),
seq_lens.data_ptr<int64_t>(),
extend_seq_lens.data_ptr<index_t>(),
extend_start_loc.data_ptr<index_t>(),
buffer.data_ptr(),
num_seqs,
num_heads,
num_heads_kv,
head_size,
head_size_v,
ke_strideN,
ke_strideH,
ve_strideN,
ve_strideH,
k_strideN,
k_strideH,
v_strideN,
v_strideH,
sm_scale,
logit_cap,
max_num_reqs,
max_context_len,
max_total_num_tokens,
max_len_extend,
size_per_thread,
is_prefix_skipped);
});
});
}