sglang.0.4.8.post1/sglang/sgl-kernel/tests/speculative/test_speculative_sampling.py

130 lines
4.0 KiB
Python

import pytest
import torch
import torch.nn.functional as F
from sgl_kernel import tree_speculative_sampling_target_only
test_cases = [
(
1,
1,
[3, -1, -1, 4, 5, 18, 11, -1, -1, -1, 12, 18],
[[0, 3, 4, 5], [6, 10, 11, -1]],
[3, 2],
),
(
0, # threshold_single
0, # threshold_acc
[1, 2, 18, -1, -1, -1, 11, -1, -1, -1, 12, 18],
[[0, 1, 2, -1], [6, 10, 11, -1]],
[2, 2],
),
]
@pytest.mark.parametrize(
"threshold_single, threshold_acc, expected_predicts, expected_accept_index, expected_accept_token_num",
test_cases,
)
def test_tree_speculative_sampling_target_only(
threshold_single,
threshold_acc,
expected_predicts,
expected_accept_index,
expected_accept_token_num,
):
"""
Tests the tree_speculative_sampling_target_only function using Pytest parameterization.
"""
device = "cuda"
candidates = torch.tensor(
[
[0, 1, 2, 3, 4, 5],
[7, 8, 9, 10, 11, 12],
],
dtype=torch.int64,
device=device,
)
retrive_index = torch.tensor(
[
[0, 1, 2, 3, 4, 5],
[6, 7, 8, 9, 10, 11],
],
dtype=torch.int64,
device=device,
)
retrive_next_token = torch.tensor(
[
[1, 2, -1, 4, 5, -1],
[4, 2, 3, -1, 5, -1],
],
dtype=torch.int64,
device=device,
)
retrive_next_sibling = torch.tensor(
[
[-1, 3, -1, -1, -1, -1],
[-1, -1, -1, -1, 1, -1],
],
dtype=torch.int64,
device=device,
)
target_logits = torch.full((2, 6, 20), 1, dtype=torch.float32, device=device)
target_logits[0, 0, 3] = 10
target_logits[0, 3, 4] = 10
target_logits[0, 4, 5] = 10
target_logits[1, 0, 11] = 10
target_logits[1, 4, 12] = 10
for i in range(target_logits.shape[0]):
for j in range(target_logits.shape[1]):
if torch.max(target_logits[i, j]) < 10:
target_logits[i, j, 18] = 10
temperatures = torch.tensor([0.01, 0.01], dtype=torch.float32, device=device)
bs, num_draft_tokens = candidates.shape
num_spec_step = len(expected_accept_index[0])
predict_shape = (len(expected_predicts),)
predicts = torch.full(predict_shape, -1, dtype=torch.int32, device=device)
accept_index = torch.full((bs, num_spec_step), -1, dtype=torch.int32, device=device)
accept_token_num = torch.full((bs,), 0, dtype=torch.int32, device=device)
expanded_temperature = temperatures.unsqueeze(1).unsqueeze(1)
target_probs = F.softmax(target_logits / expanded_temperature, dim=-1)
draft_probs = torch.full_like(target_probs, 0, dtype=torch.float32, device=device)
coins = torch.rand(bs, num_draft_tokens, device=device, dtype=torch.float32)
coins_for_final_sampling = torch.rand(bs, device=device).to(torch.float32)
tree_speculative_sampling_target_only(
predicts=predicts,
accept_index=accept_index,
accept_token_num=accept_token_num,
candidates=candidates,
retrive_index=retrive_index,
retrive_next_token=retrive_next_token,
retrive_next_sibling=retrive_next_sibling,
uniform_samples=coins,
uniform_samples_for_final_sampling=coins_for_final_sampling,
target_probs=target_probs,
draft_probs=draft_probs,
threshold_single=threshold_single,
threshold_acc=threshold_acc,
deterministic=True,
)
assert (
predicts.tolist() == expected_predicts
), f"Predicts mismatch for thresholds ({threshold_single}, {threshold_acc})"
assert (
accept_index.tolist() == expected_accept_index
), f"Accept index mismatch for thresholds ({threshold_single}, {threshold_acc})"
assert (
accept_token_num.tolist() == expected_accept_token_num
), f"Accept token num mismatch for thresholds ({threshold_single}, {threshold_acc})"
if __name__ == "__main__":
pytest.main([__file__])