sglang.0.4.8.post1/sglang/sgl-kernel/tests/test_bmm_fp8.py

44 lines
1.6 KiB
Python

# Adapted from https://github.com/flashinfer-ai/flashinfer/blob/4e8eb1879f9c3ba6d75511e5893183bf8f289a62/tests/test_bmm_fp8.py
import pytest
import torch
import torch.nn.functional as F
from sgl_kernel import bmm_fp8
def to_float8(x, dtype=torch.float8_e4m3fn):
finfo = torch.finfo(dtype)
min_val, max_val = x.aminmax()
amax = torch.maximum(min_val.abs(), max_val.abs()).clamp(min=1e-12)
scale = finfo.max / amax
x_scl_sat = (x * scale).clamp(min=finfo.min, max=finfo.max)
return x_scl_sat.to(dtype), scale.float().reciprocal()
@pytest.mark.parametrize("input_dtype", [torch.float8_e4m3fn, torch.float8_e5m2])
@pytest.mark.parametrize("mat2_dtype", [torch.float8_e4m3fn, torch.float8_e5m2])
@pytest.mark.parametrize("res_dtype", [torch.bfloat16, torch.float16])
def test_bmm_fp8(input_dtype, mat2_dtype, res_dtype):
if input_dtype == torch.float8_e5m2 and mat2_dtype == torch.float8_e5m2:
pytest.skip("Invalid combination: both input and mat2 are e5m2")
input = torch.randn([16, 48, 64], device="cuda", dtype=torch.bfloat16)
input_fp8, input_inv_s = to_float8(input, dtype=input_dtype)
# mat2 row major -> column major
mat2 = torch.randn([16, 80, 64], device="cuda", dtype=torch.bfloat16).transpose(
-2, -1
)
mat2_fp8, mat2_inv_s = to_float8(mat2, dtype=mat2_dtype)
res = torch.empty([16, 48, 80], device="cuda", dtype=res_dtype)
bmm_fp8(input_fp8, mat2_fp8, input_inv_s, mat2_inv_s, res_dtype, res)
reference = torch.bmm(input, mat2)
cos_sim = F.cosine_similarity(reference.reshape(-1), res.reshape(-1), dim=0)
assert cos_sim > 0.99
if __name__ == "__main__":
pytest.main([__file__])