sglang.0.4.8.post1/sglang/test/srt/models/test_embedding_models.py

112 lines
3.7 KiB
Python

# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import multiprocessing as mp
import random
import unittest
import torch
from transformers import AutoConfig, AutoTokenizer
from sglang.test.runners import DEFAULT_PROMPTS, HFRunner, SRTRunner
from sglang.test.test_utils import CustomTestCase, get_similarities, is_in_ci
MODELS = [
("Alibaba-NLP/gte-Qwen2-1.5B-instruct", 1, 1e-5),
("intfloat/e5-mistral-7b-instruct", 1, 1e-5),
("marco/mcdse-2b-v1", 1, 1e-5),
("Qwen/Qwen3-Embedding-8B", 1, 1e-5),
# Temporarily disable before this model is fixed
# ("jason9693/Qwen2.5-1.5B-apeach", 1, 1e-5),
]
TORCH_DTYPES = [torch.float16]
class TestEmbeddingModels(CustomTestCase):
@classmethod
def setUpClass(cls):
mp.set_start_method("spawn", force=True)
def _truncate_prompts(self, prompts, model_path):
config = AutoConfig.from_pretrained(model_path)
max_length = getattr(config, "max_position_embeddings", 2048)
tokenizer = AutoTokenizer.from_pretrained(model_path)
truncated_prompts = []
for prompt in prompts:
tokens = tokenizer(prompt, return_tensors="pt", truncation=False)
if len(tokens.input_ids[0]) > max_length:
truncated_text = tokenizer.decode(
tokens.input_ids[0][: max_length - 1], skip_special_tokens=True
)
truncated_prompts.append(truncated_text)
else:
truncated_prompts.append(prompt)
return truncated_prompts
def assert_close_prefill_logits(
self,
prompts,
model_path,
tp_size,
torch_dtype,
prefill_tolerance,
) -> None:
truncated_prompts = self._truncate_prompts(prompts, model_path)
with HFRunner(
model_path,
torch_dtype=torch_dtype,
model_type="embedding",
) as hf_runner:
hf_outputs = hf_runner.forward(truncated_prompts)
with SRTRunner(
model_path,
tp_size=tp_size,
torch_dtype=torch_dtype,
model_type="embedding",
) as srt_runner:
srt_outputs = srt_runner.forward(truncated_prompts)
for i in range(len(prompts)):
hf_logits = torch.Tensor(hf_outputs.embed_logits[i])
srt_logits = torch.Tensor(srt_outputs.embed_logits[i])
similarity = torch.tensor(get_similarities(hf_logits, srt_logits))
print("similarity diff", abs(similarity - 1))
if len(prompts[i]) <= 1000:
assert torch.all(
abs(similarity - 1) < prefill_tolerance
), "embeddings are not all close"
def test_prefill_logits(self):
models_to_test = MODELS
if is_in_ci():
models_to_test = [random.choice(MODELS)]
for model, tp_size, prefill_tolerance in models_to_test:
for torch_dtype in TORCH_DTYPES:
self.assert_close_prefill_logits(
DEFAULT_PROMPTS, model, tp_size, torch_dtype, prefill_tolerance
)
if __name__ == "__main__":
unittest.main()