512 lines
17 KiB
Python
512 lines
17 KiB
Python
import json
|
|
import os
|
|
import random
|
|
import threading
|
|
import time
|
|
import unittest
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from functools import partial
|
|
from types import SimpleNamespace
|
|
|
|
import numpy as np
|
|
import requests
|
|
|
|
from sglang.srt.utils import kill_process_tree
|
|
from sglang.test.few_shot_gsm8k import run_eval
|
|
from sglang.test.test_utils import (
|
|
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
|
|
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
|
|
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
DEFAULT_URL_FOR_TEST,
|
|
CustomTestCase,
|
|
popen_launch_server,
|
|
run_logprob_check,
|
|
)
|
|
|
|
|
|
class TestEAGLEServer(CustomTestCase):
|
|
PROMPTS = [
|
|
"[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nToday is a sunny day and I like[/INST]"
|
|
'[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nWhat are the mental triggers in Jeff Walker\'s Product Launch Formula and "Launch" book?[/INST]',
|
|
"[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nSummarize Russell Brunson's Perfect Webinar Script...[/INST]",
|
|
"[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nwho are you?[/INST]",
|
|
"[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nwhere are you from?[/INST]",
|
|
]
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.base_url = DEFAULT_URL_FOR_TEST
|
|
cls.process = popen_launch_server(
|
|
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
|
|
cls.base_url,
|
|
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
other_args=[
|
|
"--speculative-algorithm",
|
|
"EAGLE",
|
|
"--speculative-draft-model-path",
|
|
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
|
|
"--speculative-num-steps",
|
|
5,
|
|
"--speculative-eagle-topk",
|
|
8,
|
|
"--speculative-num-draft-tokens",
|
|
64,
|
|
"--mem-fraction-static",
|
|
0.7,
|
|
"--chunked-prefill-size",
|
|
128,
|
|
"--max-running-requests",
|
|
8,
|
|
],
|
|
)
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
kill_process_tree(cls.process.pid)
|
|
|
|
def send_request(self):
|
|
time.sleep(random.uniform(0, 2))
|
|
for prompt in self.PROMPTS:
|
|
url = self.base_url + "/generate"
|
|
data = {
|
|
"text": prompt,
|
|
"sampling_params": {
|
|
"temperature": 0,
|
|
"max_new_tokens": 1024,
|
|
},
|
|
}
|
|
response = requests.post(url, json=data)
|
|
assert response.status_code == 200
|
|
|
|
def send_requests_abort(self):
|
|
for prompt in self.PROMPTS:
|
|
try:
|
|
time.sleep(random.uniform(0, 2))
|
|
url = self.base_url + "/generate"
|
|
data = {
|
|
"model": "base",
|
|
"text": prompt,
|
|
"sampling_params": {
|
|
"temperature": 0,
|
|
"max_new_tokens": 1024,
|
|
},
|
|
}
|
|
# set timeout = 1s, mock disconnected
|
|
requests.post(url, json=data, timeout=1)
|
|
except Exception as e:
|
|
print(e)
|
|
pass
|
|
|
|
def test_request_abort(self):
|
|
concurrency = 4
|
|
threads = [
|
|
threading.Thread(target=self.send_request) for _ in range(concurrency)
|
|
] + [
|
|
threading.Thread(target=self.send_requests_abort)
|
|
for _ in range(concurrency)
|
|
]
|
|
for worker in threads:
|
|
worker.start()
|
|
for p in threads:
|
|
p.join()
|
|
|
|
def test_max_token_one(self):
|
|
requests.get(self.base_url + "/flush_cache")
|
|
|
|
args = SimpleNamespace(
|
|
num_shots=5,
|
|
data_path=None,
|
|
num_questions=200,
|
|
max_new_tokens=1,
|
|
parallel=128,
|
|
host="http://127.0.0.1",
|
|
port=int(self.base_url.split(":")[-1]),
|
|
)
|
|
|
|
# Just run and check it does not hang
|
|
metrics = run_eval(args)
|
|
self.assertGreater(metrics["output_throughput"], 50)
|
|
|
|
def test_gsm8k(self):
|
|
requests.get(self.base_url + "/flush_cache")
|
|
|
|
args = SimpleNamespace(
|
|
num_shots=5,
|
|
data_path=None,
|
|
num_questions=200,
|
|
max_new_tokens=512,
|
|
parallel=128,
|
|
host="http://127.0.0.1",
|
|
port=int(self.base_url.split(":")[-1]),
|
|
)
|
|
|
|
metrics = run_eval(args)
|
|
print(f"{metrics=}")
|
|
self.assertGreater(metrics["accuracy"], 0.20)
|
|
|
|
server_info = requests.get(self.base_url + "/get_server_info").json()
|
|
avg_spec_accept_length = server_info["internal_states"][0][
|
|
"avg_spec_accept_length"
|
|
]
|
|
print(f"{avg_spec_accept_length=}")
|
|
|
|
speculative_eagle_topk = server_info["speculative_eagle_topk"]
|
|
|
|
if speculative_eagle_topk == 1:
|
|
self.assertGreater(avg_spec_accept_length, 2.5)
|
|
else:
|
|
self.assertGreater(avg_spec_accept_length, 3.5)
|
|
|
|
# Wait a little bit so that the memory check happens.
|
|
time.sleep(4)
|
|
|
|
def test_logprob_start_len(self):
|
|
logprob_start_len = 4
|
|
new_tokens = 4
|
|
prompts = [
|
|
"I have a very good idea on",
|
|
"Today is a sunndy day and",
|
|
]
|
|
|
|
response = requests.post(
|
|
self.base_url + "/generate",
|
|
json={
|
|
"text": prompts,
|
|
"sampling_params": {
|
|
"temperature": 0,
|
|
"max_new_tokens": new_tokens,
|
|
},
|
|
"return_logprob": True,
|
|
"top_logprobs_num": 5,
|
|
"logprob_start_len": logprob_start_len,
|
|
},
|
|
)
|
|
response_json = response.json()
|
|
print(json.dumps(response_json, indent=2))
|
|
|
|
for res in response_json:
|
|
self.assertEqual(
|
|
res["meta_info"]["prompt_tokens"],
|
|
logprob_start_len + len(res["meta_info"]["input_token_logprobs"]),
|
|
)
|
|
|
|
self.assertEqual(res["meta_info"]["completion_tokens"], new_tokens)
|
|
self.assertEqual(len(res["meta_info"]["output_token_logprobs"]), new_tokens)
|
|
|
|
def test_logprob_match(self):
|
|
"""Test the output logprobs are close to the input logprobs if we run a prefill again."""
|
|
|
|
def run_generate(
|
|
prompt,
|
|
return_logprob=False,
|
|
max_new_tokens=512,
|
|
logprob_start_len=-1,
|
|
temperature=1.0,
|
|
):
|
|
|
|
if isinstance(prompt, str):
|
|
prompt_kwargs = {"text": prompt}
|
|
else:
|
|
prompt_kwargs = {"input_ids": prompt}
|
|
|
|
response = requests.post(
|
|
self.base_url + "/generate",
|
|
json={
|
|
**prompt_kwargs,
|
|
"sampling_params": {
|
|
"temperature": temperature,
|
|
"max_new_tokens": max_new_tokens,
|
|
"ignore_eos": True,
|
|
},
|
|
"return_logprob": return_logprob,
|
|
"return_text_in_logprobs": True,
|
|
"logprob_start_len": logprob_start_len,
|
|
"temp_scaled_logprobs": True,
|
|
},
|
|
)
|
|
return response.json()
|
|
|
|
prompt = "I have a very good idea on how to"
|
|
|
|
for temperature in [1.0]:
|
|
gen = run_generate(
|
|
prompt,
|
|
return_logprob=True,
|
|
logprob_start_len=0,
|
|
temperature=temperature,
|
|
)
|
|
output_logprobs = np.array(
|
|
[x[0] for x in gen["meta_info"]["output_token_logprobs"]]
|
|
)
|
|
num_prompts_tokens = gen["meta_info"]["prompt_tokens"]
|
|
|
|
input_tokens = [x[1] for x in gen["meta_info"]["input_token_logprobs"]]
|
|
output_tokens = [x[1] for x in gen["meta_info"]["output_token_logprobs"]]
|
|
|
|
new_prompt = input_tokens + output_tokens
|
|
score = run_generate(
|
|
new_prompt,
|
|
return_logprob=True,
|
|
logprob_start_len=0,
|
|
max_new_tokens=0,
|
|
temperature=temperature,
|
|
)
|
|
output_logprobs_score = np.array(
|
|
[
|
|
x[0]
|
|
for x in score["meta_info"]["input_token_logprobs"][
|
|
num_prompts_tokens:
|
|
]
|
|
]
|
|
)
|
|
|
|
print(f"{output_logprobs[-10:]=}")
|
|
print(f"{output_logprobs_score[-10:]=}")
|
|
|
|
diff = np.abs(output_logprobs - output_logprobs_score)
|
|
max_diff = np.max(diff)
|
|
self.assertLess(max_diff, 0.255)
|
|
|
|
def test_logprob_mixed(self):
|
|
args = []
|
|
temperature = 0
|
|
# input_len, output_len, temperature, logprob_start_len, return_logprob, top_logprobs_num
|
|
# Llama 2 context length seems to be only 2k, so we can only test small length.
|
|
for input_len in [200, 500, 1000, 2000]:
|
|
for output_len in [4, 8]:
|
|
for logprob_start_len in [0, 100, 300, 800, 1998]:
|
|
for return_logprob in [True, False]:
|
|
for top_logprobs_num in [0, 5]:
|
|
|
|
if logprob_start_len >= input_len:
|
|
continue
|
|
|
|
args.append(
|
|
(
|
|
input_len,
|
|
output_len,
|
|
temperature,
|
|
logprob_start_len,
|
|
return_logprob,
|
|
top_logprobs_num,
|
|
)
|
|
)
|
|
|
|
random.shuffle(args)
|
|
|
|
func = partial(run_logprob_check, self)
|
|
with ThreadPoolExecutor(8) as executor:
|
|
list(executor.map(func, args))
|
|
|
|
def run_decode(self, sampling_params):
|
|
return_logprob = True
|
|
top_logprobs_num = 5
|
|
return_text = True
|
|
n = 1
|
|
|
|
response = requests.post(
|
|
self.base_url + "/generate",
|
|
json={
|
|
"text": "Human: Write a travel blog post to Hawaii.\n\nAssistant:",
|
|
"sampling_params": {
|
|
"max_new_tokens": 48,
|
|
"n": n,
|
|
"temperature": 0.7,
|
|
**sampling_params,
|
|
},
|
|
"return_logprob": return_logprob,
|
|
"top_logprobs_num": top_logprobs_num,
|
|
"return_text_in_logprobs": return_text,
|
|
"logprob_start_len": 0,
|
|
},
|
|
)
|
|
self.assertEqual(response.status_code, 200)
|
|
print(json.dumps(response.json()))
|
|
print("=" * 100)
|
|
|
|
def test_penalty_mixed(self):
|
|
args = [
|
|
{},
|
|
{},
|
|
{},
|
|
{"frequency_penalty": 2},
|
|
{"presence_penalty": 1},
|
|
{"min_new_tokens": 16},
|
|
{"frequency_penalty": 0.2},
|
|
{"presence_penalty": 0.4},
|
|
{"min_new_tokens": 8},
|
|
{"frequency_penalty": 0.4, "presence_penalty": 0.8},
|
|
{"frequency_penalty": 0.4, "min_new_tokens": 12},
|
|
{"presence_penalty": 0.8, "min_new_tokens": 12},
|
|
{"presence_penalty": -0.3, "frequency_penalty": 1.3, "min_new_tokens": 32},
|
|
{"presence_penalty": 0.3, "frequency_penalty": -1.3, "min_new_tokens": 32},
|
|
]
|
|
random.shuffle(args * 5)
|
|
with ThreadPoolExecutor(8) as executor:
|
|
list(executor.map(self.run_decode, args))
|
|
|
|
def test_constrained_decoding(self):
|
|
messages = [
|
|
{"role": "system", "content": "You are a helpful assistant."},
|
|
{"role": "user", "content": "Give me a json"},
|
|
]
|
|
|
|
response = requests.post(
|
|
self.base_url + "/v1/chat/completions",
|
|
json={
|
|
"model": DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
|
|
"messages": messages,
|
|
"temperature": 0,
|
|
"response_format": {"type": "json_object"},
|
|
},
|
|
)
|
|
self.assertEqual(response.status_code, 200)
|
|
res = response.json()
|
|
|
|
# Validate response structure
|
|
self.assertIn("choices", res)
|
|
self.assertEqual(len(res["choices"]), 1)
|
|
self.assertIn("message", res["choices"][0])
|
|
self.assertIn("content", res["choices"][0]["message"])
|
|
|
|
# Validate JSON content
|
|
content_json = res["choices"][0]["message"]["content"]
|
|
is_valid_json = True
|
|
try:
|
|
content = json.loads(content_json)
|
|
self.assertIsInstance(content, dict)
|
|
except Exception:
|
|
print(f"parse JSON failed: {content_json}")
|
|
is_valid_json = False
|
|
self.assertTrue(is_valid_json)
|
|
|
|
|
|
class TestEAGLERetract(TestEAGLEServer):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
# These config helps find a leak.
|
|
os.environ["SGLANG_CI_SMALL_KV_SIZE"] = "4500"
|
|
cls.base_url = DEFAULT_URL_FOR_TEST
|
|
cls.process = popen_launch_server(
|
|
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
|
|
cls.base_url,
|
|
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
other_args=[
|
|
"--speculative-algorithm",
|
|
"EAGLE",
|
|
"--speculative-draft-model-path",
|
|
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
|
|
"--speculative-num-steps",
|
|
5,
|
|
"--speculative-eagle-topk",
|
|
8,
|
|
"--speculative-num-draft-tokens",
|
|
64,
|
|
"--mem-fraction-static",
|
|
0.7,
|
|
"--chunked-prefill-size",
|
|
128,
|
|
"--max-running-requests",
|
|
64,
|
|
],
|
|
)
|
|
|
|
|
|
class TestEAGLEServerTriton(TestEAGLEServer):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.base_url = DEFAULT_URL_FOR_TEST
|
|
cls.process = popen_launch_server(
|
|
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
|
|
cls.base_url,
|
|
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
other_args=[
|
|
"--speculative-algorithm",
|
|
"EAGLE",
|
|
"--speculative-draft-model-path",
|
|
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
|
|
"--speculative-num-steps",
|
|
5,
|
|
"--speculative-eagle-topk",
|
|
8,
|
|
"--speculative-num-draft-tokens",
|
|
64,
|
|
"--mem-fraction-static",
|
|
0.7,
|
|
"--attention-backend",
|
|
"triton",
|
|
"--max-running-requests",
|
|
8,
|
|
],
|
|
)
|
|
|
|
|
|
class TestEAGLEServerPageSize(TestEAGLEServer):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.base_url = DEFAULT_URL_FOR_TEST
|
|
cls.process = popen_launch_server(
|
|
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
|
|
cls.base_url,
|
|
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
other_args=[
|
|
"--speculative-algorithm",
|
|
"EAGLE",
|
|
"--speculative-draft-model-path",
|
|
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
|
|
"--speculative-num-steps",
|
|
5,
|
|
"--speculative-eagle-topk",
|
|
1,
|
|
"--speculative-num-draft-tokens",
|
|
6,
|
|
"--mem-fraction-static",
|
|
0.7,
|
|
"--chunked-prefill-size",
|
|
128,
|
|
"--max-running-requests",
|
|
8,
|
|
"--page-size",
|
|
4,
|
|
"--attention-backend",
|
|
"flashinfer",
|
|
],
|
|
)
|
|
|
|
|
|
class TestEAGLEServerPageSizeTopk(TestEAGLEServer):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.base_url = DEFAULT_URL_FOR_TEST
|
|
cls.process = popen_launch_server(
|
|
DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
|
|
cls.base_url,
|
|
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
other_args=[
|
|
"--speculative-algorithm",
|
|
"EAGLE",
|
|
"--speculative-draft-model-path",
|
|
DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
|
|
"--speculative-num-steps",
|
|
5,
|
|
"--speculative-eagle-topk",
|
|
8,
|
|
"--speculative-num-draft-tokens",
|
|
64,
|
|
"--mem-fraction-static",
|
|
0.7,
|
|
"--chunked-prefill-size",
|
|
128,
|
|
"--max-running-requests",
|
|
8,
|
|
"--page-size",
|
|
4,
|
|
"--attention-backend",
|
|
"flashinfer",
|
|
],
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|