180 lines
5.9 KiB
Python
180 lines
5.9 KiB
Python
"""
|
|
python3 -m unittest test_sagemaker_server.TestSageMakerServer.test_chat_completion
|
|
"""
|
|
|
|
import json
|
|
import unittest
|
|
|
|
import requests
|
|
|
|
from sglang.srt.hf_transformers_utils import get_tokenizer
|
|
from sglang.srt.utils import kill_process_tree
|
|
from sglang.test.test_utils import (
|
|
DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
|
|
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
DEFAULT_URL_FOR_TEST,
|
|
CustomTestCase,
|
|
popen_launch_server,
|
|
)
|
|
|
|
|
|
class TestSageMakerServer(CustomTestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
|
|
cls.base_url = DEFAULT_URL_FOR_TEST
|
|
cls.api_key = "sk-123456"
|
|
cls.process = popen_launch_server(
|
|
cls.model,
|
|
cls.base_url,
|
|
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
api_key=cls.api_key,
|
|
)
|
|
cls.tokenizer = get_tokenizer(DEFAULT_SMALL_MODEL_NAME_FOR_TEST)
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
kill_process_tree(cls.process.pid)
|
|
|
|
def run_chat_completion(self, logprobs, parallel_sample_num):
|
|
data = {
|
|
"model": self.model,
|
|
"messages": [
|
|
{"role": "system", "content": "You are a helpful AI assistant"},
|
|
{
|
|
"role": "user",
|
|
"content": "What is the capital of France? Answer in a few words.",
|
|
},
|
|
],
|
|
"temperature": 0,
|
|
"logprobs": logprobs is not None and logprobs > 0,
|
|
"top_logprobs": logprobs,
|
|
"n": parallel_sample_num,
|
|
}
|
|
|
|
headers = {"Authorization": f"Bearer {self.api_key}"}
|
|
|
|
response = requests.post(
|
|
f"{self.base_url}/invocations", json=data, headers=headers
|
|
).json()
|
|
|
|
if logprobs:
|
|
assert isinstance(
|
|
response["choices"][0]["logprobs"]["content"][0]["top_logprobs"][0][
|
|
"token"
|
|
],
|
|
str,
|
|
)
|
|
|
|
ret_num_top_logprobs = len(
|
|
response["choices"][0]["logprobs"]["content"][0]["top_logprobs"]
|
|
)
|
|
assert (
|
|
ret_num_top_logprobs == logprobs
|
|
), f"{ret_num_top_logprobs} vs {logprobs}"
|
|
|
|
assert len(response["choices"]) == parallel_sample_num
|
|
assert response["choices"][0]["message"]["role"] == "assistant"
|
|
assert isinstance(response["choices"][0]["message"]["content"], str)
|
|
assert response["id"]
|
|
assert response["created"]
|
|
assert response["usage"]["prompt_tokens"] > 0
|
|
assert response["usage"]["completion_tokens"] > 0
|
|
assert response["usage"]["total_tokens"] > 0
|
|
|
|
def run_chat_completion_stream(self, logprobs, parallel_sample_num=1):
|
|
data = {
|
|
"model": self.model,
|
|
"messages": [
|
|
{"role": "system", "content": "You are a helpful AI assistant"},
|
|
{
|
|
"role": "user",
|
|
"content": "What is the capital of France? Answer in a few words.",
|
|
},
|
|
],
|
|
"temperature": 0,
|
|
"logprobs": logprobs is not None and logprobs > 0,
|
|
"top_logprobs": logprobs,
|
|
"stream": True,
|
|
"stream_options": {"include_usage": True},
|
|
"n": parallel_sample_num,
|
|
}
|
|
|
|
headers = {"Authorization": f"Bearer {self.api_key}"}
|
|
|
|
response = requests.post(
|
|
f"{self.base_url}/invocations", json=data, stream=True, headers=headers
|
|
)
|
|
|
|
is_firsts = {}
|
|
for line in response.iter_lines():
|
|
line = line.decode("utf-8").replace("data: ", "")
|
|
if len(line) < 1 or line == "[DONE]":
|
|
continue
|
|
print(f"value: {line}")
|
|
line = json.loads(line)
|
|
usage = line.get("usage")
|
|
if usage is not None:
|
|
assert usage["prompt_tokens"] > 0
|
|
assert usage["completion_tokens"] > 0
|
|
assert usage["total_tokens"] > 0
|
|
continue
|
|
|
|
index = line.get("choices")[0].get("index")
|
|
data = line.get("choices")[0].get("delta")
|
|
|
|
if is_firsts.get(index, True):
|
|
assert data["role"] == "assistant"
|
|
is_firsts[index] = False
|
|
continue
|
|
|
|
if logprobs:
|
|
assert line.get("choices")[0].get("logprobs")
|
|
assert isinstance(
|
|
line.get("choices")[0]
|
|
.get("logprobs")
|
|
.get("content")[0]
|
|
.get("top_logprobs")[0]
|
|
.get("token"),
|
|
str,
|
|
)
|
|
assert isinstance(
|
|
line.get("choices")[0]
|
|
.get("logprobs")
|
|
.get("content")[0]
|
|
.get("top_logprobs"),
|
|
list,
|
|
)
|
|
ret_num_top_logprobs = len(
|
|
line.get("choices")[0]
|
|
.get("logprobs")
|
|
.get("content")[0]
|
|
.get("top_logprobs")
|
|
)
|
|
assert (
|
|
ret_num_top_logprobs == logprobs
|
|
), f"{ret_num_top_logprobs} vs {logprobs}"
|
|
|
|
assert isinstance(data["content"], str)
|
|
assert line["id"]
|
|
assert line["created"]
|
|
|
|
for index in [i for i in range(parallel_sample_num)]:
|
|
assert not is_firsts.get(
|
|
index, True
|
|
), f"index {index} is not found in the response"
|
|
|
|
def test_chat_completion(self):
|
|
for logprobs in [None, 5]:
|
|
for parallel_sample_num in [1, 2]:
|
|
self.run_chat_completion(logprobs, parallel_sample_num)
|
|
|
|
def test_chat_completion_stream(self):
|
|
for logprobs in [None, 5]:
|
|
for parallel_sample_num in [1, 2]:
|
|
self.run_chat_completion_stream(logprobs, parallel_sample_num)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|