sglang.0.4.8.post1/sglang/benchmark/mmmu/bench_sglang.py

179 lines
5.3 KiB
Python

"""
Bench the sglang-hosted vLM with benchmark MMMU
Usage:
Host the VLM: python -m sglang.launch_server --model-path Qwen/Qwen2-VL-7B-Instruct --port 30000
Benchmark: python benchmark/mmmu/bench_sglang.py --port 30000 --concurrency 16
The eval output will be logged
"""
import argparse
import asyncio
import sys
import time
import traceback
from dataclasses import dataclass, field
from typing import Any, List, Optional, Tuple
import aiohttp
import openai
from data_utils import save_json
from eval_utils import (
EvalArgs,
eval_result,
get_sampling_params,
prepare_samples,
process_result,
)
from tqdm import tqdm
from sglang.test.test_utils import add_common_sglang_args_and_parse
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=20 * 60 * 60)
@dataclass
class RequestFuncOutput:
generated_text: List[str] = field(default_factory=list)
prompt_len: List[int] = field(default_factory=list)
output_len: List[int] = field(default_factory=list)
latency: List[float] = field(default_factory=list)
ttft: List[float] = field(default_factory=list)
itl: List[float] = field(default_factory=list) # List of inter-token latencies
success: bool = False
error: str = ""
async def async_request_profile(api_url: str) -> RequestFuncOutput:
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
output = RequestFuncOutput()
try:
async with session.post(url=api_url) as response:
if response.status == 200:
output.success = True
else:
output.error = response.reason or ""
output.success = False
except Exception:
output.success = False
exc_info = sys.exc_info()
output.error = "".join(traceback.format_exception(*exc_info))
return output
def _get_prefix_suffix(prompt: str) -> Tuple[str, str]:
"""Split the prompt into prefix and suffix."""
prefix = prompt.split("<")[0]
suffix = prompt.split(">", 1)[1]
return prefix, suffix
async def process_sample(
client: Any, sample: dict, sampling_params: dict, lora_path: Optional[str] = None
) -> Tuple[dict, str]:
"""Send a single sample to the LLM and return (sample, response)."""
prompt = sample["final_input_prompt"]
prefix, suffix = _get_prefix_suffix(prompt)
image = sample["image"]
assert image is not None
image_path = sample["image_path"]
extra_body = None if lora_path is None else {"lora_path": lora_path}
response = await client.chat.completions.create(
model="default",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": prefix},
{"type": "image_url", "image_url": {"url": image_path}},
{"type": "text", "text": suffix},
],
}
],
temperature=0,
max_completion_tokens=sampling_params["max_new_tokens"],
max_tokens=sampling_params["max_new_tokens"],
extra_body=extra_body,
)
return sample, response.choices[0].message.content
async def process_sample_with_semaphore(
semaphore: asyncio.Semaphore,
client: Any,
sample: dict,
sampling_params: dict,
lora_path: Optional[str] = None,
) -> Tuple[dict, str]:
"""Wrap process_sample with a semaphore for concurrency control."""
async with semaphore:
return await process_sample(client, sample, sampling_params, lora_path)
async def eval_mmmu(args) -> None:
"""Main evaluation loop with concurrency control."""
eval_args = EvalArgs.from_cli_args(args)
sampling_params = get_sampling_params(eval_args)
samples = prepare_samples(eval_args)
lora_path = eval_args.lora_path
answer_dict = {}
out_samples = {}
client = openai.AsyncOpenAI(
api_key="sk", base_url=f"http://127.0.0.1:{args.port}/v1"
)
semaphore = asyncio.Semaphore(args.concurrency)
start = time.perf_counter()
base_url = f"http://127.0.0.1:{args.port}"
if args.profile:
print("Starting profiler...")
profile_output = await async_request_profile(
api_url=f"{base_url}/start_profile"
)
if profile_output.success:
print("Profiler started")
samples = samples[: args.profile_number]
tasks = [
process_sample_with_semaphore(
semaphore, client, sample, sampling_params, lora_path
)
for sample in samples
]
for coro in tqdm(asyncio.as_completed(tasks), total=len(tasks)):
sample, response = await coro
process_result(response, sample, answer_dict, out_samples)
if args.profile:
print("Stopping profiler...")
profile_output = await async_request_profile(api_url=f"{base_url}/stop_profile")
if profile_output.success:
print("Profiler stopped")
print(f"Benchmark time: {time.perf_counter() - start}")
args.output_path = f"./val_sglang.json"
save_json(args.output_path, out_samples)
eval_result(model_answer_path=args.output_path, answer_dict=answer_dict)
def parse_args():
parser = argparse.ArgumentParser()
EvalArgs.add_cli_args(parser)
args = add_common_sglang_args_and_parse(parser)
return args
def main():
args = parse_args()
asyncio.run(eval_mmmu(args))
if __name__ == "__main__":
main()