sglang.0.4.8.post1/nvshmem_src/perftest/device/pt-to-pt/shmem_get_latency.cu

225 lines
7.4 KiB
Plaintext

/*
* Copyright (c) 2018-2020, NVIDIA CORPORATION. All rights reserved.
*
* NVIDIA CORPORATION and its licensors retain all intellectual property
* and proprietary rights in and to this software, related documentation
* and any modifications thereto. Any use, reproduction, disclosure or
* distribution of this software and related documentation without an express
* license agreement from NVIDIA CORPORATION is strictly prohibited.
*
* See COPYRIGHT.txt for license information
*/
#define CUMODULE_NAME "shmem_get_latency.cubin"
#include <stdio.h>
#include <assert.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <unistd.h>
#include "utils.h"
#define THREADS_PER_WARP 32
#if defined __cplusplus || defined NVSHMEM_BITCODE_APPLICATION
extern "C" {
#endif
__global__ void latency_kern(int *data_d, int len, int pe, int iter) {
int i, peer;
peer = !pe;
for (i = 0; i < iter; i++) {
nvshmem_int_get_nbi(data_d, data_d, len, peer);
nvshmem_quiet();
}
}
#define LATENCY_THREADGROUP(group) \
__global__ void latency_kern_##group(int *data_d, int len, int pe, int iter) { \
int i, tid, peer; \
\
peer = !pe; \
tid = threadIdx.x; \
\
for (i = 0; i < iter; i++) { \
nvshmemx_int_get_nbi_##group(data_d, data_d, len, peer); \
\
__syncthreads(); \
if (!tid) nvshmem_quiet(); \
__syncthreads(); \
} \
}
LATENCY_THREADGROUP(warp)
LATENCY_THREADGROUP(block)
#if defined __cplusplus || defined NVSHMEM_BITCODE_APPLICATION
}
#endif
#define DEFINE_TEST_LATENCY(TG) \
\
void test_latency##TG(int *data_d, int len, int pe, int iter, CUfunction kernel, \
int threads) { \
if (use_cubin) { \
void *arglist[] = {(void *)&data_d, (void *)&len, (void *)&pe, (void *)&iter}; \
CU_CHECK(cuLaunchKernel(kernel, 1, 1, 1, threads, 1, 1, 0, NULL, arglist, NULL)); \
} else { \
latency_kern##TG<<<1, threads>>>(data_d, len, pe, iter); \
} \
}
DEFINE_TEST_LATENCY()
DEFINE_TEST_LATENCY(_warp)
DEFINE_TEST_LATENCY(_block)
int main(int argc, char *argv[]) {
int mype, npes, size;
int *data_d = NULL;
read_args(argc, argv);
int iter = iters;
int skip = warmup_iters;
int array_size, i;
void **h_tables;
uint64_t *h_size_arr;
double *h_lat;
float milliseconds;
cudaEvent_t start, stop;
CUfunction test_cubin = NULL;
CUfunction test_cubin_warp = NULL;
CUfunction test_cubin_block = NULL;
init_wrapper(&argc, &argv);
if (use_cubin) {
init_cumodule(CUMODULE_NAME);
init_test_case_kernel(&test_cubin, "latency_kern");
init_test_case_kernel(&test_cubin, "latency_kern_warp");
init_test_case_kernel(&test_cubin, "latency_kern_block");
}
cudaEventCreate(&start);
cudaEventCreate(&stop);
mype = nvshmem_my_pe();
npes = nvshmem_n_pes();
if (npes != 2) {
fprintf(stderr, "This test requires exactly two processes \n");
goto finalize;
}
data_d = (int *)nvshmem_malloc(max_size);
CUDA_CHECK(cudaMemset(data_d, 0, max_size));
array_size = max_size_log;
alloc_tables(&h_tables, 2, array_size);
h_size_arr = (uint64_t *)h_tables[0];
h_lat = (double *)h_tables[1];
nvshmem_barrier_all();
CUDA_CHECK(cudaDeviceSynchronize());
i = 0;
for (size = min_size; size <= max_size; size *= step_factor) {
if (!mype) {
int nelems;
h_size_arr[i] = size;
nelems = size / sizeof(int);
test_latency(data_d, nelems, mype, skip, test_cubin, 1);
cudaEventRecord(start);
test_latency(data_d, nelems, mype, iter, test_cubin, 1);
cudaEventRecord(stop);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaEventSynchronize(stop));
/* give latency in us */
cudaEventElapsedTime(&milliseconds, start, stop);
h_lat[i] = (milliseconds * 1000) / iter;
i++;
}
nvshmem_barrier_all();
}
if (mype == 0) {
print_table_basic("shmem_g_latency", "Thread", "size (Bytes)", "latency", "us", '-',
h_size_arr, h_lat, i);
}
i = 0;
for (size = min_size; size <= max_size; size *= step_factor) {
if (!mype) {
int nelems;
h_size_arr[i] = size;
nelems = size / sizeof(int);
test_latency_warp(data_d, nelems, mype, skip, test_cubin_warp, THREADS_PER_WARP);
cudaEventRecord(start);
test_latency_warp(data_d, nelems, mype, iter, test_cubin_warp, THREADS_PER_WARP);
cudaEventRecord(stop);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaEventSynchronize(stop));
/* give latency in us */
cudaEventElapsedTime(&milliseconds, start, stop);
h_lat[i] = (milliseconds * 1000) / iter;
i++;
}
nvshmem_barrier_all();
}
if (mype == 0) {
print_table_basic("shmem_get_latency", "Warp", "size (Bytes)", "latency", "us", '-',
h_size_arr, h_lat, i);
}
i = 0;
for (size = min_size; size <= max_size; size *= step_factor) {
if (!mype) {
int nelems;
h_size_arr[i] = size;
nelems = size / sizeof(int);
test_latency_block(data_d, nelems, mype, skip, test_cubin_block, threads_per_block);
cudaEventRecord(start);
test_latency_block(data_d, nelems, mype, iter, test_cubin_block, threads_per_block);
cudaEventRecord(stop);
CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaEventSynchronize(stop));
/* give latency in us */
cudaEventElapsedTime(&milliseconds, start, stop);
h_lat[i] = (milliseconds * 1000) / iter;
i++;
}
nvshmem_barrier_all();
}
if (mype == 0) {
print_table_basic("shmem_get_latency", "Block", "size (Bytes)", "latency", "us", '-',
h_size_arr, h_lat, i);
}
finalize:
if (data_d) nvshmem_free(data_d);
free_tables(h_tables, 2);
finalize_wrapper();
return 0;
}