|
|
||
|---|---|---|
| .. | ||
| README.md | ||
| benchmark_fbgemm_grouped_gemm.py | ||
README.md
Benchmark FBGEMM Grouped GEMM
Benchmark FBGEMM Grouped GEMM in both Triton and CUDA version and SGLang Triton Grouped GEMM, it will be used to compare the bandwidth of different implementations.
Requirements
pip install fbgemm-gpu-genai
Usage
python3 benchmark/fbgemm/benchmark_fbgemm_grouped_gemm.py --model Qwen/Qwen2-57B-A14B-Instruct --tp-size 4 --use-fp8-w8a8
For example, in H200, the Qwen2-57B-A14B-Instruct TP4 fp8w8a8 grouped gemm bandwidth result is as follows:
grouped-gemm-performance:
batch_size FBGEMM Triton Grouped GEMM FP8 FBGEMM CUTLASS F8F8BF16 Rowwise SGLang Grouped GEMM FP8
0 256.0 3704.841339 3042.626402 2254.725030
1 512.0 3691.426346 3029.065684 2269.504543
2 1024.0 3653.938629 2258.471467 2358.319020
3 2048.0 3596.644313 2271.611904 2476.895397
4 4096.0 3468.496435 2231.283986 2179.473910
The theoretical peak bandwidth of H200 is 4.8 TB/s. Taking batch_size 256 as an example, the bandwidth of FBGEMM Triton Grouped GEMM FP8 is 3704.841339 GB/s, the bandwidth of FBGEMM CUTLASS F8F8BF16 Rowwise is 3042.626402 GB/s, and the bandwidth of SGLang Grouped GEMM FP8 is 2254.725030 GB/s. Therefore, FBGEMM Triton Grouped GEMM FP8 achieves 77.9% of H200's theoretical peak bandwidth, FBGEMM CUTLASS F8F8BF16 Rowwise achieves 63.4% of H200's theoretical peak bandwidth, and SGLang Grouped GEMM FP8 achieves 46.9% of H200's theoretical peak bandwidth.