sglang.0.4.8.post1/sglang/scripts/playground/lora/lora_hf_play.py

63 lines
1.5 KiB
Python

import torch
from peft import PeftModel
from transformers import LlamaForCausalLM, LlamaTokenizer
MODEL = "mistralai/Mistral-7B-Instruct-v0.3"
# ADAPTER = "winddude/wizardLM-LlaMA-LoRA-7B"
ADAPTER = "/home/ying/test_lora"
HF_TOKEN = "..."
prompt = """
### Instruction:
Write a poem about the transformers Python library.
Mention the word "large language models" in that poem.
### Response:
The Transformers are large language models,
They're used to make predictions on text.
"""
tokenizer = LlamaTokenizer.from_pretrained(MODEL)
base_model = LlamaForCausalLM.from_pretrained(
MODEL,
device_map="auto",
# load_in_8bit=True,
torch_dtype=torch.float16,
# use_auth_token=HF_TOKEN,
).cuda()
# base model generate
with torch.no_grad():
output_tensors = base_model.generate(
input_ids=tokenizer(prompt, return_tensors="pt").input_ids.cuda(),
max_new_tokens=32,
do_sample=False,
)[0]
output = tokenizer.decode(output_tensors, skip_special_tokens=True)
print("======= base output ========")
print(output)
# peft model generate
model = PeftModel.from_pretrained(
base_model,
ADAPTER,
torch_dtype=torch.float16,
is_trainable=False,
)
with torch.no_grad():
output_tensors = model.generate(
input_ids=tokenizer(prompt, return_tensors="pt").input_ids.cuda(),
max_new_tokens=32,
do_sample=False,
)[0]
output = tokenizer.decode(output_tensors, skip_special_tokens=True)
print("======= peft output ========")
print(output)