sglang.0.4.8.post1/sglang/sgl-kernel/csrc/allreduce/mscclpp_allreduce.cuh

780 lines
31 KiB
Plaintext

// Copyright (c) Microsoft Corporation.
// Licensed under the MIT license.
#pragma once
#if defined(__HIP_PLATFORM_AMD__)
#include <hip/hip_fp16.h>
#else
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#endif
#include <mscclpp/concurrency_device.hpp>
#include <mscclpp/core.hpp>
#include <mscclpp/memory_channel.hpp>
#include <mscclpp/memory_channel_device.hpp>
#include <mscclpp/nvls_device.hpp>
#include <mscclpp/port_channel.hpp>
#include <mscclpp/port_channel_device.hpp>
// comment this for test_mscclpp_allreduce.cu
#include "utils.h"
namespace sglang {
__device__ mscclpp::DeviceSyncer deviceSyncer;
__device__ mscclpp::DeviceSyncer allGatherDeviceSyncer;
__device__ mscclpp::DeviceSyncer reduceScatterDeviceSyncer;
__device__ mscclpp::DeviceSyncer ibDeviceSyncer;
template <typename To, typename From>
__forceinline__ __device__ To bit_cast(const From& src) {
static_assert(sizeof(To) == sizeof(From), "Size mismatch for bit_cast");
union {
From f;
To t;
} u;
u.f = src;
return u.t;
}
template <typename T>
__forceinline__ __device__ T add_elements(T a, T b) {
return a + b;
}
template <>
__forceinline__ __device__ __half2 add_elements(__half2 a, __half2 b) {
return __hadd2(a, b);
}
#if (__CUDA_ARCH__ >= 800 || !defined(__CUDA_ARCH__))
template <>
__forceinline__ __device__ __nv_bfloat162 add_elements(__nv_bfloat162 a, __nv_bfloat162 b) {
return __hadd2(a, b);
}
#endif
template <typename T>
__forceinline__ __device__ int4 add_vectors_helper(int4 a, int4 b) {
int4 ret;
ret.w = bit_cast<int, T>(add_elements(bit_cast<T, int>(a.w), bit_cast<T, int>(b.w)));
ret.x = bit_cast<int, T>(add_elements(bit_cast<T, int>(a.x), bit_cast<T, int>(b.x)));
ret.y = bit_cast<int, T>(add_elements(bit_cast<T, int>(a.y), bit_cast<T, int>(b.y)));
ret.z = bit_cast<int, T>(add_elements(bit_cast<T, int>(a.z), bit_cast<T, int>(b.z)));
return ret;
}
template <typename T>
__forceinline__ __device__ int4 add_vectors(int4 a, int4 b) {
return add_vectors_helper<T>(a, b);
}
#if (__CUDA_ARCH__ >= 800 || !defined(__CUDA_ARCH__))
template <>
__forceinline__ __device__ int4 add_vectors<__nv_bfloat16>(int4 a, int4 b) {
return add_vectors_helper<__nv_bfloat162>(a, b);
}
#endif
template <>
__forceinline__ __device__ int4 add_vectors<__half>(int4 a, int4 b) {
return add_vectors_helper<__half2>(a, b);
}
template <typename T>
__forceinline__ __device__ uint2 add_vectors_helper(uint2 a, uint2 b) {
uint2 ret;
ret.x = bit_cast<int, T>(add_elements(bit_cast<T, int>(a.x), bit_cast<T, int>(b.x)));
ret.y = bit_cast<int, T>(add_elements(bit_cast<T, int>(a.y), bit_cast<T, int>(b.y)));
return ret;
}
template <typename T>
__forceinline__ __device__ uint2 add_vectors(uint2 a, uint2 b) {
return add_vectors_helper<T>(a, b);
}
#if (__CUDA_ARCH__ >= 800 || !defined(__CUDA_ARCH__))
template <>
__forceinline__ __device__ uint2 add_vectors<__nv_bfloat16>(uint2 a, uint2 b) {
return add_vectors_helper<__nv_bfloat162>(a, b);
}
#endif
template <>
__forceinline__ __device__ uint2 add_vectors<__half>(uint2 a, uint2 b) {
return add_vectors_helper<__half2>(a, b);
}
template <typename T>
__forceinline__ __device__ int add_vectors_helper(int a, int b) {
return bit_cast<int, T>(add_elements(bit_cast<T, int>(a), bit_cast<T, int>(b)));
}
template <typename T>
__forceinline__ __device__ int add_vectors(int a, int b) {
return add_vectors_helper<T>(a, b);
}
#if (__CUDA_ARCH__ >= 800 || !defined(__CUDA_ARCH__))
template <>
__forceinline__ __device__ int add_vectors<__nv_bfloat16>(int a, int b) {
return add_vectors_helper<__nv_bfloat162>(a, b);
}
#endif
template <>
__forceinline__ __device__ int add_vectors<__half>(int a, int b) {
return add_vectors_helper<__half2>(a, b);
}
// -------------------------------------------------------
// allreduce_LL_1node using LLPacket, origin allreduce2
// -------------------------------------------------------
__device__ uint64_t globalFlag = 1;
template <typename TYPE>
__global__ void __launch_bounds__(1024, 1) allreduce_LL_1node(
mscclpp::MemoryChannelDeviceHandle* memChans,
TYPE* buff,
TYPE* scratch,
void* resultBuff,
int rank,
int worldSize,
size_t nelems) {
nelems = nelems / (sizeof(int) / sizeof(TYPE));
// This version of allreduce only works for single nodes
const int nPeers = worldSize - 1;
const size_t nPkts = nelems / 2;
const int nelemsPerRank = nelems / worldSize;
const int nPktsPerRank = nelemsPerRank / 2;
// flag for packets. Initially 1
const uint32_t flag = (uint32_t)globalFlag;
// thread block & channel info
const int nBlocksPerPeer = gridDim.x / nPeers;
const int localBlockIdx = blockIdx.x % nBlocksPerPeer;
const int peerIdx = blockIdx.x / nBlocksPerPeer;
const int remoteRank = peerIdx < rank ? peerIdx : peerIdx + 1;
mscclpp::MemoryChannelDeviceHandle memChan = memChans[peerIdx];
const int tid = threadIdx.x + localBlockIdx * blockDim.x;
// double buffering
size_t scratchBaseOffset = (flag & 1) ? 0 : nPkts * sizeof(mscclpp::LLPacket);
void* scratchBuff = (void*)((char*)scratch + scratchBaseOffset);
size_t scratchOffset = scratchBaseOffset + rank * nPktsPerRank * sizeof(mscclpp::LLPacket);
size_t scratchResultOffset =
(flag & 1) ? 2 * nPkts * sizeof(mscclpp::LLPacket) : 3 * nPkts * sizeof(mscclpp::LLPacket);
size_t srcOffset = remoteRank * nelemsPerRank * sizeof(int);
uint2* src = (uint2*)((char*)buff + rank * nelemsPerRank * sizeof(int));
uint2* dst = (uint2*)((char*)resultBuff + rank * nelemsPerRank * sizeof(int));
// step 1: write to scratch buffer
memChan.putPackets(scratchOffset, srcOffset, nelemsPerRank * sizeof(int), tid, blockDim.x * nBlocksPerPeer, flag);
// step 2: get data from scratch buffer, reduce data and write result to remote scratch buffer
for (int idx = threadIdx.x + blockIdx.x * blockDim.x; idx < nPktsPerRank; idx += blockDim.x * gridDim.x) {
uint2 data = make_uint2(0, 0);
for (int index = 0; index < nPeers; index++) {
const int remoteRank = index < rank ? index : index + 1;
mscclpp::LLPacket* dstPkt = (mscclpp::LLPacket*)scratchBuff + remoteRank * nPktsPerRank;
uint2 val = dstPkt[idx].read(flag);
data = add_vectors<TYPE>(val, data);
}
data = add_vectors<TYPE>(data, src[idx]);
dst[idx] = data;
mscclpp::LLPacket packet;
packet.data1 = data.x;
packet.flag1 = flag;
packet.data2 = data.y;
packet.flag2 = flag;
size_t offset = scratchResultOffset / sizeof(mscclpp::LLPacket) + (idx + rank * nPktsPerRank);
for (int index = 0; index < nPeers; index++) {
memChans[index].write(offset, packet);
}
}
// step 3: get data result from scratch buffer
mscclpp::LLPacket* dstPkt = (mscclpp::LLPacket*)((char*)scratch + scratchResultOffset);
const int dstOffset = remoteRank * nPktsPerRank;
uint2* result = (uint2*)((char*)resultBuff + remoteRank * nelemsPerRank * sizeof(int));
for (int idx = threadIdx.x + localBlockIdx * blockDim.x; idx < nPktsPerRank; idx += blockDim.x * nBlocksPerPeer) {
uint2 data = dstPkt[idx + dstOffset].read(flag);
result[idx].x = data.x;
result[idx].y = data.y;
}
if (threadIdx.x == 0 && blockIdx.x == 0) {
globalFlag += 1;
}
}
// -------------------------------------------------------
// allreduce_LL_2node using LLPacket, origin allreduce5
// -------------------------------------------------------
template <typename TYPE>
__global__ void __launch_bounds__(1024, 1) allreduce_LL_2node(
mscclpp::MemoryChannelDeviceHandle* memChans,
mscclpp::PortChannelDeviceHandle* portChans,
TYPE* buff,
TYPE* scratch,
TYPE* putBuff,
TYPE* resultBuff,
int rank,
int nRanksPerNode,
int worldSize,
size_t nelems) {
nelems = nelems / (sizeof(int) / sizeof(TYPE));
// This version of allreduce only works for single nodes
const int nPeersInNode = nRanksPerNode - 1;
const int nPkts = nelems / 2;
const int nelemsPerLocalRank = nelems / nRanksPerNode;
const int nPktsPerLocalRank = nelemsPerLocalRank / 2;
const int localRankId = rank % nRanksPerNode;
// flag for packets. Initially 1
const uint32_t flag = (uint32_t)globalFlag;
// thread block & channel info
const int nBlocksPerPeer = gridDim.x / nPeersInNode;
const int localBlockIdx = blockIdx.x % nBlocksPerPeer;
const int peerIdx = blockIdx.x / nBlocksPerPeer;
const int remoteRankIdx = peerIdx < localRankId ? peerIdx : peerIdx + 1;
mscclpp::MemoryChannelDeviceHandle memChan = memChans[peerIdx];
mscclpp::PortChannelDeviceHandle portChan = portChans[localRankId];
const int tid = threadIdx.x + localBlockIdx * blockDim.x;
// double buffering
size_t scratchBaseOffset = (flag & 1) ? 0 : nPkts * sizeof(mscclpp::LLPacket);
size_t putBaseOffset = (flag & 1) ? 0 : nPktsPerLocalRank * sizeof(mscclpp::LLPacket);
void* scratchBuff = (void*)((char*)scratch + scratchBaseOffset);
size_t scratchOffset = scratchBaseOffset + localRankId * nPktsPerLocalRank * sizeof(mscclpp::LLPacket);
size_t scratchResultOffset =
(flag & 1) ? 2 * nPkts * sizeof(mscclpp::LLPacket) : 3 * nPkts * sizeof(mscclpp::LLPacket);
size_t srcOffset = remoteRankIdx * nelemsPerLocalRank * sizeof(int);
uint2* src = (uint2*)((char*)buff + localRankId * nelemsPerLocalRank * sizeof(int));
uint2* dst = (uint2*)((char*)resultBuff + localRankId * nelemsPerLocalRank * sizeof(int));
// step 1: write to scratch buffer
if (nRanksPerNode > 1) {
memChan.putPackets(
scratchOffset, srcOffset, nelemsPerLocalRank * sizeof(int), tid, blockDim.x * nBlocksPerPeer, flag);
}
// step 2: get data from scratch buffer, do local reduce-scatter in each node.
mscclpp::LLPacket* putPkt = (mscclpp::LLPacket*)((char*)putBuff + putBaseOffset);
for (int idx = threadIdx.x + blockIdx.x * blockDim.x; idx < nPktsPerLocalRank; idx += blockDim.x * gridDim.x) {
uint2 data = make_uint2(0, 0);
for (int index = 0; index < nPeersInNode; index++) {
const int remoteRank = index < localRankId ? index : index + 1;
mscclpp::LLPacket* dstPkt = (mscclpp::LLPacket*)scratchBuff + remoteRank * nPktsPerLocalRank;
uint2 val = dstPkt[idx].read(flag);
data = add_vectors<TYPE>(val, data);
}
data = add_vectors<TYPE>(data, src[idx]);
putPkt[idx].write(data.x, data.y, flag);
dst[idx] = data;
}
deviceSyncer.sync(gridDim.x);
// step 3. send local reduced data to remote node.
if (threadIdx.x == 0 && blockIdx.x == 0) {
portChan.put(scratchOffset, putBaseOffset, nPktsPerLocalRank * sizeof(mscclpp::LLPacket));
if ((flag & 63) == 0) {
portChan.flush();
}
}
// step 4. try to read the data from scratch buffer and write to local peers
mscclpp::LLPacket* dstPkt = (mscclpp::LLPacket*)scratchBuff + localRankId * nPktsPerLocalRank;
for (int idx = threadIdx.x + blockIdx.x * blockDim.x; idx < nPktsPerLocalRank; idx += blockDim.x * gridDim.x) {
uint2 res = dst[idx];
uint2 val = dstPkt[idx].read(flag);
res = add_vectors<TYPE>(res, val);
mscclpp::LLPacket packet;
packet.data1 = res.x;
packet.flag1 = flag;
packet.data2 = res.y;
packet.flag2 = flag;
size_t offset = scratchResultOffset / sizeof(mscclpp::LLPacket) + (idx + localRankId * nPktsPerLocalRank);
for (int index = 0; index < nPeersInNode; index++) {
memChans[index].write(offset, packet);
}
dst[idx] = res;
}
// step 5: get data result from scratch buffer
dstPkt = (mscclpp::LLPacket*)((char*)scratch + scratchResultOffset);
const int dstOffset = remoteRankIdx * nPktsPerLocalRank;
uint2* result = (uint2*)((char*)resultBuff + remoteRankIdx * nelemsPerLocalRank * sizeof(int));
if (nRanksPerNode > 1) {
for (int idx = threadIdx.x + localBlockIdx * blockDim.x; idx < nPktsPerLocalRank;
idx += blockDim.x * nBlocksPerPeer) {
uint2 data = dstPkt[idx + dstOffset].read(flag);
result[idx] = data;
}
}
if (threadIdx.x == 0 && blockIdx.x == 0) {
globalFlag += 1;
}
}
static const mscclpp::Transport IBs[] = {
mscclpp::Transport::IB0,
mscclpp::Transport::IB1,
mscclpp::Transport::IB2,
mscclpp::Transport::IB3,
mscclpp::Transport::IB4,
mscclpp::Transport::IB5,
mscclpp::Transport::IB6,
mscclpp::Transport::IB7};
class MscclCommGroup {
public:
std::shared_ptr<mscclpp::Communicator> comm_;
const size_t rank_;
const size_t world_size_;
const std::vector<int64_t> rank_to_node_;
const std::vector<int64_t> rank_to_ib_;
MscclCommGroup(
mscclpp::UniqueId unique_id,
const size_t rank,
const size_t world_size,
const std::vector<int64_t>& rank_to_node,
const std::vector<int64_t>& rank_to_ib)
: rank_(rank), world_size_(world_size), rank_to_node_(rank_to_node), rank_to_ib_(rank_to_ib) {
auto bootstrap = std::make_shared<mscclpp::TcpBootstrap>(rank, world_size);
bootstrap->initialize(unique_id);
comm_ = std::make_shared<mscclpp::Communicator>(bootstrap);
}
template <typename T>
void allreduce(cudaStream_t stream, T* output, size_t input_numel, int threads = 512, int block_limit = 21) {
throw std::runtime_error("you should not call allreduce of a base context");
}
bool is_same_node(int r1, int r2) {
return rank_to_node_[r1] == rank_to_node_[r2];
}
void make_connection(
std::unordered_map<int, std::shared_ptr<mscclpp::Connection>>& same_node_connections,
std::unordered_map<int, std::shared_ptr<mscclpp::Connection>>& cross_node_connections) {
same_node_connections.clear();
cross_node_connections.clear();
std::unordered_map<int, mscclpp::NonblockingFuture<std::shared_ptr<mscclpp::Connection>>> conn_futures;
for (int r = 0; r < world_size_; ++r) {
if (r == rank_) continue;
mscclpp::Transport transport = is_same_node(r, rank_) ? mscclpp::Transport::CudaIpc : IBs[rank_to_ib_[r]];
conn_futures.emplace(r, comm_->connectOnSetup(r, 0, transport));
}
comm_->setup();
for (int r = 0; r < world_size_; ++r) {
if (r == rank_) continue;
if (is_same_node(r, rank_)) {
same_node_connections.emplace(r, conn_futures[r].get());
} else {
cross_node_connections.emplace(r, conn_futures[r].get());
}
}
}
void make_memory_channels_with_scratch(
void* tensor_ptr,
const size_t tensor_bytes,
void* scratch_ptr,
const size_t scratch_bytes,
const std::unordered_map<int, std::shared_ptr<mscclpp::Connection>>& connections,
std::unordered_map<int, std::shared_ptr<mscclpp::MemoryDevice2DeviceSemaphore>>& semaphores,
std::unordered_map<int, mscclpp::RegisteredMemory>& registered_memories,
std::unordered_map<int, mscclpp::MemoryChannel>& channels) {
channels.clear();
make_semaphores<mscclpp::MemoryDevice2DeviceSemaphore>(connections, semaphores);
register_tensor_with_connections(scratch_ptr, scratch_bytes, connections, registered_memories);
for (const auto& [peer, _] : connections) {
channels.emplace(
peer, mscclpp::MemoryChannel(semaphores[peer], registered_memories[peer], tensor_ptr, scratch_ptr));
}
}
void make_port_channels_with_scratch(
std::shared_ptr<mscclpp::ProxyService> proxyService,
void* tensor_ptr,
const size_t tensor_bytes,
void* scratch_ptr,
const size_t scratch_bytes,
const std::unordered_map<int, std::shared_ptr<mscclpp::Connection>>& connections,
std::unordered_map<int, std::shared_ptr<mscclpp::Host2DeviceSemaphore>>& semaphores,
std::unordered_map<int, mscclpp::RegisteredMemory>& registered_memories,
std::unordered_map<int, mscclpp::PortChannel>& channels) {
channels.clear();
make_semaphores<mscclpp::Host2DeviceSemaphore>(connections, semaphores);
mscclpp::TransportFlags flags;
for (const auto& [_, conn] : connections) {
flags |= conn->transport();
}
auto local_reg_memory = comm_->registerMemory(tensor_ptr, tensor_bytes, flags);
register_tensor_with_connections(scratch_ptr, scratch_bytes, connections, registered_memories);
std::unordered_map<int, mscclpp::SemaphoreId> semaphore_ids;
std::unordered_map<int, size_t> memory_ids;
memory_ids[rank_] = proxyService->addMemory(local_reg_memory);
for (const auto& [peer, memory] : registered_memories) {
if (peer == rank_) continue;
memory_ids[peer] = proxyService->addMemory(memory);
}
for (const auto& [peer, semaphore] : semaphores) {
semaphore_ids[peer] = proxyService->addSemaphore(semaphore);
}
for (const auto& [peer, _] : connections) {
channels.emplace(peer, proxyService->portChannel(semaphore_ids[peer], memory_ids[peer], memory_ids[rank_]));
}
}
template <typename SemaphoreType>
void make_semaphores(
const std::unordered_map<int, std::shared_ptr<mscclpp::Connection>>& connections,
std::unordered_map<int, std::shared_ptr<SemaphoreType>>& semaphores) {
semaphores.clear();
for (const auto& [peer, conn] : connections) {
semaphores[peer] = std::make_shared<SemaphoreType>(*comm_, conn);
}
comm_->setup();
}
void register_tensor_with_connections(
void* tensor_ptr,
size_t tensor_bytes,
const std::unordered_map<int, std::shared_ptr<mscclpp::Connection>>& connections,
std::unordered_map<int, mscclpp::RegisteredMemory>& registered_memories) {
registered_memories.clear();
mscclpp::TransportFlags all_transports;
for (const auto& [_, connection] : connections) {
all_transports |= connection->transport();
}
mscclpp::RegisteredMemory buf_reg_mem = comm_->registerMemory(tensor_ptr, tensor_bytes, all_transports);
registered_memories[rank_] = buf_reg_mem;
std::unordered_map<int, mscclpp::NonblockingFuture<mscclpp::RegisteredMemory>> remote_mem_futures;
for (const auto& [r, connection] : connections) {
comm_->sendMemoryOnSetup(buf_reg_mem, r, 0);
auto remoteMemory = comm_->recvMemoryOnSetup(r, 0);
remote_mem_futures.emplace(r, remoteMemory);
}
comm_->setup();
for (auto& [r, mem_feature] : remote_mem_futures) {
registered_memories.emplace(r, mem_feature.get());
}
}
void make_device_memory_handle_base_on_new_ptr(
const std::unordered_map<int, mscclpp::MemoryChannel>& old_memory_channels,
std::unordered_map<int, mscclpp::RegisteredMemory>& registered_sm_memories,
std::unordered_map<int, std::shared_ptr<mscclpp::MemoryDevice2DeviceSemaphore>>& memory_semaphores,
std::unordered_map<int, mscclpp::MemoryChannel>& memory_channels,
mscclpp::GpuBuffer<mscclpp::MemoryChannelDeviceHandle>& device_memory_handle,
void* input,
void* scratch,
const cudaStream_t stream) {
memory_channels.clear();
for (const auto& [peer, channel] : old_memory_channels) {
memory_channels.emplace(
peer, mscclpp::MemoryChannel(memory_semaphores[peer], registered_sm_memories[peer], input, scratch));
}
std::vector<mscclpp::MemoryChannel> memory_channels_list;
for (int r = 0; r < world_size_; r++) {
if (r == rank_) continue;
if (is_same_node(r, rank_)) {
memory_channels_list.push_back(memory_channels[r]);
}
}
std::vector<mscclpp::MemoryChannelDeviceHandle> memory_channel_handlers(memory_channels_list.size());
std::transform(
memory_channels_list.begin(),
memory_channels_list.end(),
memory_channel_handlers.begin(),
[](const mscclpp::MemoryChannel& channel) { return channel.deviceHandle(); });
mscclpp::gpuMemcpyAsync<mscclpp::MemoryChannelDeviceHandle>(
device_memory_handle.data(),
memory_channel_handlers.data(),
memory_channel_handlers.size(),
stream,
cudaMemcpyHostToDevice);
}
};
class Msccl1NodeLLcontext {
private:
std::shared_ptr<MscclCommGroup> comm_group_ = nullptr;
void* scratch_;
const size_t scratch_bytes_;
std::unordered_map<int, std::shared_ptr<mscclpp::Connection>> same_node_connections_;
std::unordered_map<int, std::shared_ptr<mscclpp::Connection>> cross_node_connections_;
std::unordered_map<int, mscclpp::RegisteredMemory> registered_sm_memories_;
std::unordered_map<int, std::shared_ptr<mscclpp::MemoryDevice2DeviceSemaphore>> memory_semaphores_;
std::unordered_map<int, mscclpp::MemoryChannel> memory_channels_;
mscclpp::GpuBuffer<mscclpp::MemoryChannelDeviceHandle> d_memHandles_;
std::unordered_map<void*, std::unordered_map<int, mscclpp::MemoryChannel>> input_ptr2memory_channels_;
std::unordered_map<void*, mscclpp::GpuBuffer<mscclpp::MemoryChannelDeviceHandle>> input_ptr2d_memHandles_;
cudaStream_t h2d_stream;
const size_t nranks_per_node_;
public:
Msccl1NodeLLcontext(
mscclpp::UniqueId unique_id,
const size_t rank,
const size_t world_size,
void* scratch,
const size_t scratch_bytes,
const size_t nranks_per_node,
const std::vector<int64_t>& rank_to_node,
const std::vector<int64_t>& rank_to_ib)
: scratch_(scratch),
scratch_bytes_(scratch_bytes),
nranks_per_node_(nranks_per_node),
d_memHandles_(nranks_per_node - 1) {
CHECK_CUDA_SUCCESS(cudaStreamCreateWithFlags(&h2d_stream, cudaStreamNonBlocking));
comm_group_ = std::make_shared<MscclCommGroup>(unique_id, rank, world_size, rank_to_node, rank_to_ib);
comm_group_->make_connection(same_node_connections_, cross_node_connections_);
comm_group_->make_memory_channels_with_scratch(
scratch_,
scratch_bytes_,
scratch_,
scratch_bytes_,
same_node_connections_,
memory_semaphores_,
registered_sm_memories_,
memory_channels_);
std::vector<mscclpp::MemoryChannel> memory_channels_list;
for (int r = 0; r < comm_group_->world_size_; r++) {
if (r == comm_group_->rank_) continue;
memory_channels_list.push_back(memory_channels_[r]);
}
std::vector<mscclpp::MemoryChannelDeviceHandle> memory_channel_handlers(memory_channels_list.size());
std::transform(
memory_channels_list.begin(),
memory_channels_list.end(),
memory_channel_handlers.begin(),
[](const mscclpp::MemoryChannel& channel) { return channel.deviceHandle(); });
mscclpp::gpuMemcpy<mscclpp::MemoryChannelDeviceHandle>(
d_memHandles_.data(), memory_channel_handlers.data(), memory_channel_handlers.size(), cudaMemcpyHostToDevice);
}
~Msccl1NodeLLcontext() {
CHECK_CUDA_SUCCESS(cudaStreamDestroy(h2d_stream));
}
template <typename T>
void allreduce(cudaStream_t stream, T* input, T* output, size_t input_numel, int nthreads = 512, int nblocks = 21) {
dim3 nthrs(nthreads);
dim3 nblks(nblocks);
cudaStreamCaptureStatus capturing_status;
CHECK_CUDA_SUCCESS(cudaStreamIsCapturing(stream, &capturing_status));
mscclpp::MemoryChannelDeviceHandle* memChans;
if (capturing_status != cudaStreamCaptureStatusActive) {
std::unordered_map<int, mscclpp::MemoryChannel> memory_channels;
comm_group_->make_device_memory_handle_base_on_new_ptr(
memory_channels_,
registered_sm_memories_,
memory_semaphores_,
memory_channels,
d_memHandles_,
input,
scratch_,
h2d_stream);
CHECK_CUDA_SUCCESS(cudaStreamSynchronize(h2d_stream));
memChans = d_memHandles_.data();
} else {
void* input_void_ptr = reinterpret_cast<void*>(input);
if (input_ptr2d_memHandles_.find(input_void_ptr) == input_ptr2d_memHandles_.end()) {
std::unordered_map<int, mscclpp::MemoryChannel> memory_channels;
mscclpp::GpuBuffer<mscclpp::MemoryChannelDeviceHandle> device_memory_handle(comm_group_->world_size_ - 1);
comm_group_->make_device_memory_handle_base_on_new_ptr(
memory_channels_,
registered_sm_memories_,
memory_semaphores_,
memory_channels,
device_memory_handle,
input,
scratch_,
h2d_stream);
input_ptr2memory_channels_.emplace(input_void_ptr, memory_channels);
input_ptr2d_memHandles_.emplace(input_void_ptr, device_memory_handle);
}
auto it = input_ptr2d_memHandles_.find(input_void_ptr);
memChans = it->second.data();
}
allreduce_LL_1node<T><<<nblks, nthrs, 0, stream>>>(
memChans, (T*)input, (T*)scratch_, output, comm_group_->rank_, comm_group_->world_size_, input_numel);
cudaError_t status = cudaGetLastError();
if (status != cudaSuccess) {
printf("rank: %lu failed to launch allreduce_LL_1node: %s\n", comm_group_->rank_, cudaGetErrorString(status));
}
}
};
class Msccl2NodeLLcontext {
private:
std::shared_ptr<MscclCommGroup> comm_group_ = nullptr;
void* scratch_;
const size_t scratch_bytes_;
void* put_buffer_;
const size_t put_buffer_bytes_;
std::unordered_map<int, std::shared_ptr<mscclpp::Connection>> same_node_connections_;
std::unordered_map<int, std::shared_ptr<mscclpp::Connection>> cross_node_connections_;
std::unordered_map<int, mscclpp::RegisteredMemory> registered_sm_memories_;
std::unordered_map<int, mscclpp::RegisteredMemory> registered_port_memories_;
std::unordered_map<int, std::shared_ptr<mscclpp::MemoryDevice2DeviceSemaphore>> memory_semaphores_;
std::unordered_map<int, std::shared_ptr<mscclpp::Host2DeviceSemaphore>> port_semaphores_;
std::unordered_map<int, mscclpp::MemoryChannel> memory_channels_;
std::unordered_map<int, mscclpp::PortChannel> port_channels_;
mscclpp::GpuBuffer<mscclpp::MemoryChannelDeviceHandle> d_memHandles_;
mscclpp::GpuBuffer<mscclpp::PortChannelDeviceHandle> d_portHandles_;
std::shared_ptr<mscclpp::ProxyService> proxyService;
cudaStream_t h2d_stream;
const size_t nranks_per_node_;
std::unordered_map<void*, std::unordered_map<int, mscclpp::MemoryChannel>> input_ptr2memory_channels_;
std::unordered_map<void*, mscclpp::GpuBuffer<mscclpp::MemoryChannelDeviceHandle>> input_ptr2d_memHandles_;
public:
Msccl2NodeLLcontext(
mscclpp::UniqueId unique_id,
const size_t rank,
const size_t world_size,
void* scratch,
const size_t scratch_bytes,
void* put_buffer,
const size_t put_buffer_bytes,
const size_t nranks_per_node,
const std::vector<int64_t>& rank_to_node,
const std::vector<int64_t>& rank_to_ib)
: scratch_(scratch),
scratch_bytes_(scratch_bytes),
put_buffer_(put_buffer),
put_buffer_bytes_(put_buffer_bytes),
nranks_per_node_(nranks_per_node),
d_memHandles_(nranks_per_node - 1),
d_portHandles_(world_size - nranks_per_node) {
CHECK_CUDA_SUCCESS(cudaStreamCreateWithFlags(&h2d_stream, cudaStreamNonBlocking));
comm_group_ = std::make_shared<MscclCommGroup>(unique_id, rank, world_size, rank_to_node, rank_to_ib);
proxyService = std::make_shared<mscclpp::ProxyService>();
proxyService->startProxy();
comm_group_->make_connection(same_node_connections_, cross_node_connections_);
comm_group_->make_memory_channels_with_scratch(
scratch_,
scratch_bytes_,
scratch_,
scratch_bytes_,
same_node_connections_,
memory_semaphores_,
registered_sm_memories_,
memory_channels_);
comm_group_->make_port_channels_with_scratch(
proxyService,
put_buffer_,
put_buffer_bytes_,
scratch_,
scratch_bytes_,
cross_node_connections_,
port_semaphores_,
registered_port_memories_,
port_channels_);
std::vector<mscclpp::MemoryChannel> memory_channels_list;
std::vector<mscclpp::PortChannel> port_channels_list;
for (int r = 0; r < comm_group_->world_size_; r++) {
if (r == comm_group_->rank_) continue;
if (comm_group_->is_same_node(r, comm_group_->rank_)) {
memory_channels_list.push_back(memory_channels_[r]);
} else {
port_channels_list.push_back(port_channels_[r]);
}
}
std::vector<mscclpp::MemoryChannelDeviceHandle> memory_channel_handlers(memory_channels_list.size());
std::transform(
memory_channels_list.begin(),
memory_channels_list.end(),
memory_channel_handlers.begin(),
[](const mscclpp::MemoryChannel& channel) { return channel.deviceHandle(); });
mscclpp::gpuMemcpy<mscclpp::MemoryChannelDeviceHandle>(
d_memHandles_.data(), memory_channel_handlers.data(), memory_channel_handlers.size(), cudaMemcpyHostToDevice);
std::vector<mscclpp::PortChannelDeviceHandle> port_channel_handlers(port_channels_list.size());
std::transform(
port_channels_list.begin(),
port_channels_list.end(),
port_channel_handlers.begin(),
[](const mscclpp::PortChannel& channel) { return channel.deviceHandle(); });
mscclpp::gpuMemcpy<mscclpp::PortChannelDeviceHandle>(
d_portHandles_.data(), port_channel_handlers.data(), port_channel_handlers.size(), cudaMemcpyHostToDevice);
}
~Msccl2NodeLLcontext() {
CHECK_CUDA_SUCCESS(cudaStreamDestroy(h2d_stream));
if (proxyService) {
proxyService->stopProxy();
}
}
template <typename T>
void
allreduce(cudaStream_t stream, T* input, T* output, const size_t input_numel, int nthreads = 512, int nblocks = 21) {
dim3 nthrs(nthreads);
dim3 nblks(nblocks);
cudaStreamCaptureStatus capturing_status;
CHECK_CUDA_SUCCESS(cudaStreamIsCapturing(stream, &capturing_status));
mscclpp::MemoryChannelDeviceHandle* memChans;
if (capturing_status != cudaStreamCaptureStatusActive) {
std::unordered_map<int, mscclpp::MemoryChannel> memory_channels;
comm_group_->make_device_memory_handle_base_on_new_ptr(
memory_channels_,
registered_sm_memories_,
memory_semaphores_,
memory_channels,
d_memHandles_,
input,
scratch_,
h2d_stream);
CHECK_CUDA_SUCCESS(cudaStreamSynchronize(h2d_stream));
memChans = d_memHandles_.data();
} else {
void* input_void_ptr = reinterpret_cast<void*>(input);
if (input_ptr2d_memHandles_.find(input_void_ptr) == input_ptr2d_memHandles_.end()) {
std::unordered_map<int, mscclpp::MemoryChannel> memory_channels;
mscclpp::GpuBuffer<mscclpp::MemoryChannelDeviceHandle> device_memory_handle(7);
comm_group_->make_device_memory_handle_base_on_new_ptr(
memory_channels_,
registered_sm_memories_,
memory_semaphores_,
memory_channels,
device_memory_handle,
input,
scratch_,
h2d_stream);
input_ptr2memory_channels_.emplace(input_void_ptr, memory_channels);
input_ptr2d_memHandles_.emplace(input_void_ptr, device_memory_handle);
}
auto it = input_ptr2d_memHandles_.find(input_void_ptr);
memChans = it->second.data();
}
allreduce_LL_2node<T><<<nblks, nthrs, 0, stream>>>(
memChans,
d_portHandles_.data(),
(T*)input,
(T*)scratch_,
(T*)put_buffer_,
output,
comm_group_->rank_,
nranks_per_node_,
comm_group_->world_size_,
input_numel);
cudaError_t status = cudaGetLastError();
if (status != cudaSuccess) {
printf("rank: %lu failed to launch allreduce_LL_2node: %s\n", comm_group_->rank_, cudaGetErrorString(status));
}
}
};
} // namespace sglang