sglang.0.4.8.post1/sglang/sgl-kernel/csrc/cpu/common.h

169 lines
5.1 KiB
C++

#pragma once
#include <ATen/ATen.h>
#include <ATen/Parallel.h>
#include <ATen/record_function.h>
#if defined(_OPENMP)
#include <omp.h>
#endif
namespace {
// dispatch bool
#define AT_DISPATCH_BOOL(BOOL_V, BOOL_NAME, ...) \
[&] { \
if (BOOL_V) { \
constexpr bool BOOL_NAME = true; \
return __VA_ARGS__(); \
} else { \
constexpr bool BOOL_NAME = false; \
return __VA_ARGS__(); \
} \
}()
// dispatch: bfloat16, float16, int8_t, fp8_e4m3
#define CPU_DISPATCH_PACKED_TYPES(TYPE, ...) \
[&] { \
switch (TYPE) { \
case at::ScalarType::BFloat16: { \
using packed_t = at::BFloat16; \
return __VA_ARGS__(); \
} \
case at::ScalarType::Half: { \
using packed_t = at::Half; \
return __VA_ARGS__(); \
} \
case at::ScalarType::Char: { \
using packed_t = int8_t; \
return __VA_ARGS__(); \
} \
case at::ScalarType::Float8_e4m3fn: { \
using packed_t = at::Float8_e4m3fn; \
return __VA_ARGS__(); \
} \
default: \
TORCH_CHECK(false, "Unsupported floating data type.\n"); \
} \
}()
#define UNUSED(x) (void)(x)
#define CHECK_CPU(x) TORCH_CHECK(x.device().type() == at::kCPU, #x " must be a CPU tensor")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
#define CHECK_LAST_DIM_CONTIGUOUS(x) \
TORCH_CHECK(x.strides()[x.strides().size() - 1] == 1, #x "must be contiguous at last dimension")
#define CHECK_INPUT(x) \
CHECK_CPU(x); \
CHECK_CONTIGUOUS(x)
#define CHECK_LAST_DIM_CONTIGUOUS_INPUT(x) \
CHECK_CPU(x); \
CHECK_LAST_DIM_CONTIGUOUS(x)
#define CHECK_DIM(d, x) TORCH_CHECK(x.dim() == d, #x " must be a " #d "D tensor")
#define CHECK_EQ(a, b) TORCH_CHECK((a) == (b), "CHECK_EQ(" #a ", " #b ") failed. ", a, " vs ", b)
// parallel routines
constexpr int GRAIN_SIZE = 1024;
template <typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0>
inline T div_up(T x, T y) {
return (x + y - 1) / y;
}
template <typename T>
inline void balance211(T n, T nth, T ith, T& n_start, T& n_end) {
#if 0
// onednn partition pattern
T& n_my = n_end;
if (nth <= 1 || n == 0) {
n_start = 0;
n_my = n;
} else {
T n1 = div_up(n, nth);
T n2 = n1 - 1;
T T1 = n - n2 * nth;
n_my = ith < T1 ? n1 : n2;
n_start = ith <= T1 ? ith*n1 : T1 * n1 + (ith - T1) * n2;
}
n_end += n_start;
#else
// pytorch aten partition pattern
T n_my = div_up(n, nth);
n_start = ith * n_my;
n_end = std::min(n_start + n_my, n);
#endif
}
template <typename func_t>
inline void parallel_for(int n, const func_t& f) {
#if defined(_OPENMP)
#pragma omp parallel
{
int nth = omp_get_num_threads();
int ith = omp_get_thread_num();
int tbegin, tend;
balance211(n, nth, ith, tbegin, tend);
f(tbegin, tend);
}
#else
f(0, n);
#endif
}
// data indexing for dimension collapse
template <typename T>
inline T data_index_init(T offset) {
return offset;
}
template <typename T, typename... Args>
inline T data_index_init(T offset, T& x, const T& X, Args&&... args) {
offset = data_index_init(offset, std::forward<Args>(args)...);
x = offset % X;
return offset / X;
}
inline bool data_index_step() {
return true;
}
template <typename T, typename... Args>
inline bool data_index_step(T& x, const T& X, Args&&... args) {
if (data_index_step(std::forward<Args>(args)...)) {
x = ((x + 1) == X) ? 0 : (x + 1);
return x == 0;
}
return false;
}
// forced unroll for perf critical path
#if __has_attribute(always_inline)
#define ALWAYS_INLINE __attribute__((__always_inline__)) inline
#else
#define ALWAYS_INLINE inline
#endif
template <int n>
struct Unroll {
template <typename Func, typename... Args>
ALWAYS_INLINE void operator()(const Func& f, Args... args) const {
Unroll<n - 1>{}(f, args...);
f(std::integral_constant<int, n - 1>{}, args...);
}
};
template <>
struct Unroll<1> {
template <typename Func, typename... Args>
ALWAYS_INLINE void operator()(const Func& f, Args... args) const {
f(std::integral_constant<int, 0>{}, args...);
}
};
} // anonymous namespace