sglang.0.4.8.post1/sglang/sgl-kernel/csrc/cpu/gemm.h

202 lines
5.1 KiB
C++

#pragma once
#include <ATen/native/CPUBlas.h>
#include "common.h"
// amx-bf16
#define TILE_M 16
#define TILE_N 16
#define TILE_K 32
// block size for AMX gemm
constexpr int block_size_m() {
return 2 * TILE_M;
}
constexpr int block_size_n() {
return 2 * TILE_N;
}
// define threshold using brgemm (intel AMX)
template <typename T>
inline bool can_use_brgemm(int M);
template <>
inline bool can_use_brgemm<at::BFloat16>(int M) {
return M > 4;
}
template <>
inline bool can_use_brgemm<at::Half>(int M) {
return true;
}
// TODO: add u8s8 brgemm, this requires PyTorch 2.7
template <>
inline bool can_use_brgemm<int8_t>(int M) {
return false;
}
template <>
inline bool can_use_brgemm<at::Float8_e4m3fn>(int M) {
return M > 4;
}
// work around compiler internal error
#define BLOCK_K 128 // 4 * TILE_K
// adjust leading dimension size for K
template <typename T>
inline int64_t get_row_size(int64_t K) {
return K;
}
template <>
inline int64_t get_row_size<int8_t>(int64_t K) {
return K + sizeof(int32_t);
}
inline int64_t get_row_size(int64_t K, bool use_int8_w8a8) {
return use_int8_w8a8 ? K + sizeof(int32_t) : K;
}
// pack weight to vnni format
at::Tensor convert_weight_packed(at::Tensor& weight);
// moe implementations for int8 w8a8
template <typename scalar_t>
void fused_experts_int8_kernel_impl(
scalar_t* __restrict__ output,
scalar_t* __restrict__ ic1,
scalar_t* __restrict__ ic2,
uint8_t* __restrict__ A_tmp,
float* __restrict__ C_tmp,
uint8_t* __restrict__ Aq_tmp,
float* __restrict__ As_tmp,
const scalar_t* __restrict__ input,
const int8_t* __restrict__ packed_w1,
const int8_t* __restrict__ packed_w2,
const float* __restrict__ w1s,
const float* __restrict__ w2s,
const float* __restrict__ topk_weights,
const int32_t* __restrict__ sorted_ids,
const int32_t* __restrict__ expert_ids,
const int32_t* __restrict__ offsets,
int64_t M,
int64_t N,
int64_t K,
int64_t E,
int64_t topk,
int64_t num_tokens_post_pad);
// moe implementations for fp8 w8a16
template <typename scalar_t>
void fused_experts_fp8_kernel_impl(
scalar_t* __restrict__ output,
scalar_t* __restrict__ ic0,
scalar_t* __restrict__ ic1,
scalar_t* __restrict__ ic2,
scalar_t* __restrict__ A_tmp,
scalar_t* __restrict__ B_tmp,
float* __restrict__ C_tmp,
const scalar_t* __restrict__ input,
const at::Float8_e4m3fn* __restrict__ packed_w1,
const at::Float8_e4m3fn* __restrict__ packed_w2,
const float* __restrict__ w1s,
const float* __restrict__ w2s,
int64_t block_size_N,
int64_t block_size_K,
const float* __restrict__ topk_weights,
const int32_t* __restrict__ sorted_ids,
const int32_t* __restrict__ expert_ids,
const int32_t* __restrict__ offsets,
int64_t M,
int64_t N,
int64_t K,
int64_t E,
int64_t topk,
int64_t num_tokens_post_pad);
// shared expert implementation for int8 w8a8
template <typename scalar_t>
void shared_expert_int8_kernel_impl(
scalar_t* __restrict__ output,
scalar_t* __restrict__ ic1,
float* __restrict__ C_tmp,
uint8_t* __restrict__ Aq_tmp,
float* __restrict__ As_tmp,
const scalar_t* __restrict__ input,
const int8_t* __restrict__ packed_w1,
const int8_t* __restrict__ packed_w2,
const float* __restrict__ w1s,
const float* __restrict__ w2s,
const scalar_t* __restrict__ fused_experts_out,
float routed_scaling_factor,
int64_t M,
int64_t N,
int64_t K);
template <typename scalar_t>
void shared_expert_fp8_kernel_impl(
scalar_t* __restrict__ output,
scalar_t* __restrict__ ic0,
scalar_t* __restrict__ ic1,
scalar_t* __restrict__ B_tmp,
float* __restrict__ C_tmp,
const scalar_t* __restrict__ input,
const at::Float8_e4m3fn* __restrict__ packed_w1,
const at::Float8_e4m3fn* __restrict__ packed_w2,
const float* __restrict__ w1s,
const float* __restrict__ w2s,
int64_t block_size_N,
int64_t block_size_K,
const scalar_t* __restrict__ fused_experts_out,
float routed_scaling_factor,
int64_t M,
int64_t N,
int64_t K);
// tinygemm interface
template <typename scalar_t>
void tinygemm_kernel(
const scalar_t* __restrict__ A,
const scalar_t* __restrict__ B,
scalar_t* __restrict__ C,
float* __restrict__ Ctmp,
int64_t M,
int64_t N,
int64_t K,
int64_t lda,
int64_t ldb,
int64_t ldc,
bool brg);
template <typename scalar_t>
void tinygemm_kernel(
const uint8_t* __restrict__ A,
const int8_t* __restrict__ B,
scalar_t* __restrict__ C,
int32_t* __restrict__ Ctmp,
const float* __restrict__ As,
const float* __restrict__ Bs,
int64_t M,
int64_t N,
int64_t K,
int64_t lda,
int64_t ldb,
int64_t ldc,
bool brg);
template <typename scalar_t>
void tinygemm_kernel(
const scalar_t* __restrict__ A,
const at::Float8_e4m3fn* __restrict__ B,
scalar_t* __restrict__ C,
scalar_t* __restrict__ Btmp,
float* __restrict__ Ctmp,
const float* __restrict__ scale,
int64_t M,
int64_t N,
int64_t K,
int64_t lda,
int64_t ldb,
int64_t ldc,
bool brg,
int64_t block_size_K);