171 lines
5.5 KiB
Python
Executable File
171 lines
5.5 KiB
Python
Executable File
import random
|
|
|
|
import pytest
|
|
import torch
|
|
from sgl_kernel import fp8_blockwise_scaled_grouped_mm
|
|
|
|
|
|
def cdiv(a: int, b: int) -> int:
|
|
return -(a // -b)
|
|
|
|
|
|
def scale_shape(shape, group_shape):
|
|
return tuple(cdiv(shape[i], group_shape[i]) for i in range(len(group_shape)))
|
|
|
|
|
|
def to_fp8(tensor: torch.Tensor) -> torch.Tensor:
|
|
finfo = torch.finfo(torch.float8_e4m3fn)
|
|
return torch.round(tensor.clamp(min=finfo.min, max=finfo.max)).to(
|
|
dtype=torch.float8_e4m3fn
|
|
)
|
|
|
|
|
|
def baseline_scaled_mm(
|
|
a: torch.Tensor,
|
|
b: torch.Tensor,
|
|
scale_a: torch.Tensor,
|
|
scale_b: torch.Tensor,
|
|
out_dtype: type[torch.dtype],
|
|
) -> torch.Tensor:
|
|
|
|
def group_broadcast(t, shape):
|
|
for i, s in enumerate(shape):
|
|
if t.shape[i] != s and t.shape[i] != 1:
|
|
assert s % t.shape[i] == 0
|
|
t = (
|
|
t.unsqueeze(i + 1)
|
|
.expand(*t.shape[: i + 1], s // t.shape[i], *t.shape[i + 1 :])
|
|
.flatten(i, i + 1)
|
|
)
|
|
return t
|
|
|
|
scale_a = group_broadcast(scale_a, a.shape)
|
|
scale_b = group_broadcast(scale_b, b.shape)
|
|
|
|
return torch.mm(
|
|
(scale_a * a.to(dtype=torch.float32)), (scale_b * b.to(dtype=torch.float32))
|
|
).to(out_dtype)
|
|
|
|
|
|
def is_sm100_supported(device=None) -> bool:
|
|
return (torch.cuda.get_device_capability(device)[0] == 10) and (
|
|
torch.version.cuda >= "12.8"
|
|
)
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
not is_sm100_supported(),
|
|
reason="fp8_blockwise_scaled_grouped_mm at sgl-kernel is only supported on sm100",
|
|
)
|
|
@pytest.mark.parametrize("num_experts", [8, 16])
|
|
@pytest.mark.parametrize("out_dtype", [torch.half, torch.bfloat16])
|
|
def test_fp8_blockwise_scaled_grouped_mm(num_experts, out_dtype):
|
|
device = "cuda"
|
|
alignment = 16
|
|
n_g = alignment * random.randint(1, 5) * 128
|
|
k_g = alignment * random.randint(1, 5) * 128
|
|
|
|
scale_a_group_shape = (1, 128)
|
|
scale_b_group_shape = (128, 128)
|
|
|
|
expert_offsets = torch.zeros((num_experts + 1), device=device, dtype=torch.int32)
|
|
problem_sizes = torch.zeros((num_experts, 3), device=device, dtype=torch.int32)
|
|
layout_sfa = torch.zeros((num_experts, 5), device=device, dtype=torch.int32)
|
|
layout_sfb = torch.zeros((num_experts, 5), device=device, dtype=torch.int32)
|
|
|
|
a_tensors = []
|
|
b_tensors = []
|
|
a_scales_tensors = []
|
|
b_scales_tensors = []
|
|
baseline_tensors = []
|
|
|
|
for g in range(num_experts):
|
|
m_g = alignment * random.randint(1, 64)
|
|
expert_offsets[g + 1] = expert_offsets[g] + m_g
|
|
problem_sizes[g][:] = torch.tensor([m_g, n_g, k_g], device=device)
|
|
|
|
a_g = to_fp8(torch.randn((m_g, k_g), device=device))
|
|
b_g = to_fp8(torch.randn((n_g, k_g), device=device).t())
|
|
a_tensors.append(a_g)
|
|
b_tensors.append(b_g)
|
|
|
|
scale_a_shape = scale_shape(a_g.shape, scale_a_group_shape)
|
|
scale_b_shape = scale_shape(b_g.shape, scale_b_group_shape)
|
|
|
|
a_scales_tensors.append(torch.randn(scale_a_shape, device=device) * 0.001)
|
|
b_scales_tensors.append(torch.randn(scale_b_shape, device=device) * 0.001)
|
|
|
|
baseline = baseline_scaled_mm(
|
|
a_g, b_g, a_scales_tensors[-1], b_scales_tensors[-1], out_dtype
|
|
)
|
|
baseline_tensors.append(baseline)
|
|
|
|
a_stack = torch.empty(
|
|
(expert_offsets[-1], k_g), device=device, dtype=torch.float8_e4m3fn
|
|
)
|
|
b_stack = torch.empty(
|
|
(num_experts, n_g, k_g), device=device, dtype=torch.float8_e4m3fn
|
|
)
|
|
|
|
for g in range(num_experts):
|
|
a_stack[expert_offsets[g] : expert_offsets[g + 1]] = a_tensors[g]
|
|
b_stack[g] = b_tensors[g].t()
|
|
b_stack = b_stack.transpose(1, 2)
|
|
|
|
a_scale_stack = torch.empty(
|
|
(expert_offsets[-1], k_g // 128), device=device, dtype=torch.float32
|
|
)
|
|
b_scale_stack = torch.empty(
|
|
(num_experts, n_g // 128, k_g // 128), device=device, dtype=torch.float32
|
|
)
|
|
|
|
for g in range(num_experts):
|
|
a_scale_stack[expert_offsets[g] : expert_offsets[g + 1]] = a_scales_tensors[g]
|
|
b_scale_stack[g] = b_scales_tensors[g].t()
|
|
b_scale_stack = b_scale_stack.transpose(1, 2)
|
|
|
|
c_out = torch.empty((expert_offsets[-1], n_g), device=device, dtype=out_dtype)
|
|
a_strides = torch.full(
|
|
(num_experts,), a_stack.stride(0), device=device, dtype=torch.int64
|
|
)
|
|
c_strides = torch.full(
|
|
(num_experts,), c_out.stride(0), device=device, dtype=torch.int64
|
|
)
|
|
workspace = torch.empty((1024 * 1024 * 1024), device=device, dtype=torch.uint8)
|
|
a_ptrs = torch.empty((num_experts,), device=device, dtype=torch.int64)
|
|
b_ptrs = torch.empty((num_experts,), device=device, dtype=torch.int64)
|
|
out_ptrs = torch.empty((num_experts,), device=device, dtype=torch.int64)
|
|
a_scales_ptrs = torch.empty((num_experts,), device=device, dtype=torch.int64)
|
|
b_scales_ptrs = torch.empty((num_experts,), device=device, dtype=torch.int64)
|
|
|
|
fp8_blockwise_scaled_grouped_mm(
|
|
c_out,
|
|
a_ptrs,
|
|
b_ptrs,
|
|
out_ptrs,
|
|
a_scales_ptrs,
|
|
b_scales_ptrs,
|
|
a_stack,
|
|
b_stack,
|
|
a_scale_stack,
|
|
b_scale_stack,
|
|
a_strides,
|
|
a_strides,
|
|
c_strides,
|
|
layout_sfa,
|
|
layout_sfb,
|
|
problem_sizes,
|
|
expert_offsets[:-1],
|
|
workspace,
|
|
)
|
|
|
|
for g in range(num_experts):
|
|
baseline = baseline_tensors[g]
|
|
actual = c_out[expert_offsets[g] : expert_offsets[g + 1]]
|
|
torch.testing.assert_close(actual, baseline, rtol=1e-2, atol=5e-4)
|
|
print(f"num_experts={num_experts}, out_dtype={out_dtype}: OK")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pytest.main([__file__])
|