224 lines
6.0 KiB
Python
224 lines
6.0 KiB
Python
import itertools
|
|
import math
|
|
import unittest
|
|
|
|
# TODO: use interface in cpu.py
|
|
import sgl_kernel
|
|
import torch
|
|
import torch.nn as nn
|
|
from utils import (
|
|
BLOCK_K,
|
|
BLOCK_N,
|
|
SiluAndMul,
|
|
factor_for_scale,
|
|
fp8_max,
|
|
fp8_min,
|
|
per_token_quant_int8,
|
|
precision,
|
|
scaled_weight,
|
|
torch_naive_moe,
|
|
torch_w8a8_per_column_moe,
|
|
)
|
|
|
|
from sglang.test.test_utils import CustomTestCase
|
|
|
|
torch.manual_seed(1234)
|
|
|
|
|
|
class TestSharedExpert(CustomTestCase):
|
|
M = [2, 121]
|
|
N = [32, 32 * 4]
|
|
K = [32, 32 * 2]
|
|
routed_scaling_factor = [16]
|
|
|
|
M_fp8 = [2, 12]
|
|
N_fp8 = [512]
|
|
K_fp8 = [256]
|
|
|
|
def _bf16_shared_expert(self, m, n, k, routed_scaling_factor):
|
|
dtype = torch.bfloat16
|
|
prepack = True
|
|
|
|
hidden_states = torch.randn(m, k, dtype=dtype) / k
|
|
w1 = torch.randn(2 * n, k, dtype=dtype)
|
|
w2 = torch.randn(k, n, dtype=dtype)
|
|
fused_output = torch.randn(m, k, dtype=dtype) / k
|
|
|
|
# fused moe mutates content in hs
|
|
hidden_states2 = hidden_states.clone()
|
|
|
|
# bfloat16
|
|
ref = torch_naive_moe(
|
|
hidden_states.float(),
|
|
w1.float(),
|
|
w2.float(),
|
|
fused_output.float(),
|
|
routed_scaling_factor,
|
|
).to(dtype=dtype)
|
|
res = torch.ops.sgl_kernel.shared_expert_cpu(
|
|
hidden_states,
|
|
w1,
|
|
w2,
|
|
fused_output,
|
|
routed_scaling_factor,
|
|
True,
|
|
False,
|
|
False,
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
False,
|
|
)
|
|
|
|
atol = rtol = precision[ref.dtype]
|
|
torch.testing.assert_close(ref, res, atol=atol, rtol=rtol)
|
|
|
|
def test_bf16_shared_expert(self):
|
|
for params in itertools.product(
|
|
self.M,
|
|
self.N,
|
|
self.K,
|
|
self.routed_scaling_factor,
|
|
):
|
|
with self.subTest(
|
|
m=params[0],
|
|
n=params[1],
|
|
k=params[2],
|
|
routed_scaling_factor=params[3],
|
|
):
|
|
self._bf16_shared_expert(*params)
|
|
|
|
def _int8_shared_expert(self, m, n, k, routed_scaling_factor):
|
|
dtype = torch.bfloat16
|
|
prepack = True
|
|
|
|
hidden_states = torch.randn(m, k, dtype=dtype) / k
|
|
w1 = torch.randn(2 * n, k, dtype=dtype)
|
|
w2 = torch.randn(k, n, dtype=dtype)
|
|
fused_output = torch.randn(m, k, dtype=dtype) / k
|
|
|
|
# fused moe mutates content in hs
|
|
hidden_states2 = hidden_states.clone()
|
|
|
|
w1_q, w1_s = per_token_quant_int8(w1)
|
|
w2_q, w2_s = per_token_quant_int8(w2)
|
|
ref2 = torch_w8a8_per_column_moe(
|
|
hidden_states2.float(),
|
|
w1_q,
|
|
w2_q,
|
|
w1_s,
|
|
w2_s,
|
|
fused_output.float(),
|
|
routed_scaling_factor,
|
|
).to(dtype=dtype)
|
|
res2 = torch.ops.sgl_kernel.shared_expert_cpu(
|
|
hidden_states2,
|
|
w1_q,
|
|
w2_q,
|
|
fused_output,
|
|
routed_scaling_factor,
|
|
True,
|
|
True,
|
|
False,
|
|
w1_s,
|
|
w2_s,
|
|
None,
|
|
None,
|
|
None,
|
|
False,
|
|
)
|
|
|
|
atol = rtol = precision[ref2.dtype]
|
|
torch.testing.assert_close(ref2, res2, atol=atol, rtol=rtol)
|
|
|
|
def test_int8_shared_expert(self):
|
|
for params in itertools.product(
|
|
self.M,
|
|
self.N,
|
|
self.K,
|
|
self.routed_scaling_factor,
|
|
):
|
|
with self.subTest(
|
|
m=params[0],
|
|
n=params[1],
|
|
k=params[2],
|
|
routed_scaling_factor=params[3],
|
|
):
|
|
self._int8_shared_expert(*params)
|
|
|
|
def _fp8_shared_expert(self, M, N, K, routed_scaling_factor):
|
|
dtype = torch.bfloat16
|
|
prepack = True
|
|
|
|
a = torch.randn(M, K, dtype=dtype) / math.sqrt(K)
|
|
|
|
w1_fp32 = torch.randn(1, 2 * N, K)
|
|
w1 = (w1_fp32 * fp8_max).clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
|
|
|
|
w2_fp32 = torch.randn(1, K, N)
|
|
w2 = (w2_fp32 * fp8_max).clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
|
|
|
|
w1s = torch.randn(1, 2 * N // BLOCK_N, K // BLOCK_K) * factor_for_scale
|
|
w2s = torch.randn(1, K // BLOCK_N, N // BLOCK_K) * factor_for_scale
|
|
|
|
w1_scaled = scaled_weight(w1, w1s).view(2 * N, K)
|
|
w2_scaled = scaled_weight(w2, w2s).view(K, N)
|
|
|
|
# change back to 2D
|
|
w1, w2 = w1.squeeze(0), w2.squeeze(0)
|
|
w1s, w2s = w1s.squeeze(0), w2s.squeeze(0)
|
|
w1_scaled, w2_scaled = w1_scaled.squeeze(0), w2_scaled.squeeze(0)
|
|
|
|
fused_out = torch.randn(M, K, dtype=dtype) / math.sqrt(K)
|
|
a2 = a.clone()
|
|
|
|
# ref
|
|
ic0 = torch.matmul(a.float(), w1_scaled.transpose(0, 1))
|
|
ic1 = SiluAndMul(ic0)
|
|
shared_out = torch.matmul(ic1, w2_scaled.transpose(0, 1))
|
|
ref_out = shared_out + fused_out.float() * routed_scaling_factor
|
|
ref_out = ref_out.to(dtype=dtype)
|
|
|
|
w1 = torch.ops.sgl_kernel.convert_weight_packed(w1) # [2N, K]
|
|
w2 = torch.ops.sgl_kernel.convert_weight_packed(w2) # [K, N]
|
|
out = torch.ops.sgl_kernel.shared_expert_cpu(
|
|
a2,
|
|
w1,
|
|
w2,
|
|
fused_out,
|
|
routed_scaling_factor,
|
|
True,
|
|
False,
|
|
True,
|
|
w1s,
|
|
w2s,
|
|
[BLOCK_N, BLOCK_K],
|
|
None,
|
|
None,
|
|
True,
|
|
)
|
|
|
|
atol = rtol = precision[ref_out.dtype]
|
|
torch.testing.assert_close(ref_out, out, atol=atol, rtol=rtol)
|
|
|
|
def test_fp8_shared_expert(self):
|
|
for params in itertools.product(
|
|
self.M_fp8,
|
|
self.N_fp8,
|
|
self.K_fp8,
|
|
self.routed_scaling_factor,
|
|
):
|
|
with self.subTest(
|
|
M=params[0],
|
|
N=params[1],
|
|
K=params[2],
|
|
routed_scaling_factor=params[3],
|
|
):
|
|
self._fp8_shared_expert(*params)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|