182 lines
5.5 KiB
Python
182 lines
5.5 KiB
Python
import dataclasses
|
|
import multiprocessing as mp
|
|
import unittest
|
|
from types import SimpleNamespace
|
|
from typing import List
|
|
|
|
import torch
|
|
|
|
from sglang.srt.utils import kill_process_tree
|
|
from sglang.test.runners import DEFAULT_PROMPTS, SRTRunner, check_close_model_outputs
|
|
from sglang.test.test_utils import (
|
|
DEFAULT_MODEL_NAME_FOR_TEST,
|
|
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
DEFAULT_URL_FOR_TEST,
|
|
CustomTestCase,
|
|
is_in_ci,
|
|
popen_launch_server,
|
|
)
|
|
|
|
|
|
class TestTransformersFallbackEndpoint(CustomTestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.model = DEFAULT_MODEL_NAME_FOR_TEST
|
|
cls.base_url = DEFAULT_URL_FOR_TEST
|
|
cls.process = popen_launch_server(
|
|
cls.model,
|
|
cls.base_url,
|
|
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
other_args=["--impl", "transformers"],
|
|
)
|
|
cls.mmlu_lower_bound = 0.65
|
|
cls.gsm8k_lower_bound = 0.65
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
kill_process_tree(cls.process.pid)
|
|
|
|
def test_mmlu(self):
|
|
args = SimpleNamespace(
|
|
base_url=self.base_url,
|
|
model=self.model,
|
|
eval_name="mmlu",
|
|
num_examples=64,
|
|
num_threads=32,
|
|
)
|
|
from sglang.test.run_eval import run_eval
|
|
|
|
metrics = run_eval(args)
|
|
self.assertGreaterEqual(metrics["score"], self.mmlu_lower_bound)
|
|
|
|
def test_gsm8k(self):
|
|
args = SimpleNamespace(
|
|
num_shots=5,
|
|
data_path=None,
|
|
num_questions=200,
|
|
max_new_tokens=512,
|
|
parallel=128,
|
|
host="http://127.0.0.1",
|
|
port=int(self.base_url.split(":")[-1]),
|
|
)
|
|
from sglang.test.few_shot_gsm8k import run_eval
|
|
|
|
metrics = run_eval(args)
|
|
print(f"{metrics=}")
|
|
self.assertGreater(metrics["accuracy"], self.gsm8k_lower_bound)
|
|
|
|
|
|
class TestTransformersFallbackTorchAO(TestTransformersFallbackEndpoint):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.model = DEFAULT_MODEL_NAME_FOR_TEST
|
|
cls.base_url = DEFAULT_URL_FOR_TEST
|
|
cls.process = popen_launch_server(
|
|
cls.model,
|
|
cls.base_url,
|
|
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
other_args=[
|
|
"--impl",
|
|
"transformers",
|
|
"--torchao-config",
|
|
"int4wo-128",
|
|
],
|
|
)
|
|
cls.mmlu_lower_bound = 0.65
|
|
cls.gsm8k_lower_bound = 0.65
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class ModelCase:
|
|
model_path: str
|
|
tp_size: int = 1
|
|
prefill_tolerance: float = 5e-2
|
|
decode_tolerance: float = 5e-2
|
|
rouge_l_tolerance: float = 1
|
|
skip_long_prompt: bool = False
|
|
trust_remote_code: bool = False
|
|
torchao_config: str = None
|
|
torch_dtype: torch.dtype = torch.float16
|
|
|
|
|
|
# Popular models that run on the CI
|
|
CI_MODELS = [
|
|
ModelCase(DEFAULT_MODEL_NAME_FOR_TEST),
|
|
]
|
|
|
|
ALL_OTHER_MODELS = [
|
|
ModelCase(DEFAULT_MODEL_NAME_FOR_TEST, tp_size=2),
|
|
]
|
|
|
|
|
|
class TestTransformersFallbackEngine(CustomTestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
mp.set_start_method("spawn", force=True)
|
|
|
|
def assert_close_logits_and_output_strs(
|
|
self,
|
|
prompts: List[str],
|
|
model_case: ModelCase,
|
|
) -> None:
|
|
model_path = model_case.model_path
|
|
max_new_tokens = 32
|
|
# force to use transformers impl
|
|
with SRTRunner(
|
|
model_path,
|
|
tp_size=model_case.tp_size,
|
|
torch_dtype=model_case.torch_dtype,
|
|
model_type="generation",
|
|
impl="transformers",
|
|
trust_remote_code=model_case.trust_remote_code,
|
|
torchao_config=model_case.torchao_config,
|
|
) as srt_runner:
|
|
srt_outputs = srt_runner.forward(prompts, max_new_tokens=max_new_tokens)
|
|
|
|
with SRTRunner(
|
|
model_path,
|
|
tp_size=model_case.tp_size,
|
|
torch_dtype=model_case.torch_dtype,
|
|
model_type="generation",
|
|
trust_remote_code=model_case.trust_remote_code,
|
|
torchao_config=model_case.torchao_config,
|
|
) as srt_runner:
|
|
srt_transformers_outputs = srt_runner.forward(
|
|
prompts, max_new_tokens=max_new_tokens
|
|
)
|
|
|
|
check_close_model_outputs(
|
|
hf_outputs=srt_transformers_outputs,
|
|
srt_outputs=srt_outputs,
|
|
prefill_tolerance=model_case.prefill_tolerance,
|
|
decode_tolerance=model_case.decode_tolerance,
|
|
rouge_l_tolerance=model_case.rouge_l_tolerance,
|
|
debug_text=f"model_path={model_path} prompts={prompts}",
|
|
)
|
|
|
|
def test_ci_models(self):
|
|
for model_case in CI_MODELS:
|
|
# Skip long prompts for models that do not have a long context
|
|
prompts = DEFAULT_PROMPTS
|
|
if model_case.skip_long_prompt:
|
|
prompts = [p for p in DEFAULT_PROMPTS if len(p) < 1000]
|
|
# Assert the logits and output strs are close
|
|
self.assert_close_logits_and_output_strs(prompts, model_case)
|
|
|
|
def test_others(self):
|
|
if is_in_ci():
|
|
return
|
|
|
|
# Skip long prompts for models that do not have a long context
|
|
prompts = DEFAULT_PROMPTS
|
|
for model_case in ALL_OTHER_MODELS:
|
|
if model_case.skip_long_prompt:
|
|
prompts = [p for p in DEFAULT_PROMPTS if len(p) < 1000]
|
|
|
|
# Assert the logits and output strs are close
|
|
self.assert_close_logits_and_output_strs(prompts, model_case)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|