sglang.0.4.8.post1/sglang/test/srt/openai_server/basic/test_openai_embedding.py

98 lines
3.5 KiB
Python

import unittest
import openai
from sglang.srt.utils import kill_process_tree
from sglang.test.test_utils import (
DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST,
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
CustomTestCase,
popen_launch_server,
)
class TestOpenAIEmbedding(CustomTestCase):
@classmethod
def setUpClass(cls):
cls.model = DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST
cls.base_url = DEFAULT_URL_FOR_TEST
cls.api_key = "sk-123456"
# Configure embedding-specific args
other_args = ["--is-embedding", "--enable-metrics"]
cls.process = popen_launch_server(
cls.model,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
api_key=cls.api_key,
other_args=other_args,
)
cls.base_url += "/v1"
@classmethod
def tearDownClass(cls):
kill_process_tree(cls.process.pid)
def test_embedding_single(self):
"""Test single embedding request"""
client = openai.Client(api_key=self.api_key, base_url=self.base_url)
response = client.embeddings.create(model=self.model, input="Hello world")
self.assertEqual(len(response.data), 1)
self.assertTrue(len(response.data[0].embedding) > 0)
def test_embedding_batch(self):
"""Test batch embedding request"""
client = openai.Client(api_key=self.api_key, base_url=self.base_url)
response = client.embeddings.create(
model=self.model, input=["Hello world", "Test text"]
)
self.assertEqual(len(response.data), 2)
self.assertTrue(len(response.data[0].embedding) > 0)
self.assertTrue(len(response.data[1].embedding) > 0)
def test_embedding_single_batch_str(self):
"""Test embedding with a List[str] and length equals to 1"""
client = openai.Client(api_key=self.api_key, base_url=self.base_url)
response = client.embeddings.create(model=self.model, input=["Hello world"])
self.assertEqual(len(response.data), 1)
self.assertTrue(len(response.data[0].embedding) > 0)
def test_embedding_single_int_list(self):
"""Test embedding with a List[int] or List[List[int]]]"""
client = openai.Client(api_key=self.api_key, base_url=self.base_url)
response = client.embeddings.create(
model=self.model,
input=[[15339, 314, 703, 284, 612, 262, 10658, 10188, 286, 2061]],
)
self.assertEqual(len(response.data), 1)
self.assertTrue(len(response.data[0].embedding) > 0)
client = openai.Client(api_key=self.api_key, base_url=self.base_url)
response = client.embeddings.create(
model=self.model,
input=[15339, 314, 703, 284, 612, 262, 10658, 10188, 286, 2061],
)
self.assertEqual(len(response.data), 1)
self.assertTrue(len(response.data[0].embedding) > 0)
def test_empty_string_embedding(self):
"""Test embedding an empty string."""
client = openai.Client(api_key=self.api_key, base_url=self.base_url)
# Text embedding example with empty string
text = ""
# Expect a BadRequestError for empty input
with self.assertRaises(openai.BadRequestError) as cm:
client.embeddings.create(
model=self.model,
input=text,
)
# check the status code
self.assertEqual(cm.exception.status_code, 400)
if __name__ == "__main__":
unittest.main()