sglang.0.4.8.post1/sglang/test/srt/test_flashmla.py

154 lines
4.3 KiB
Python

"""
Usage:
python3 test/srt/test_flashmla.py
"""
import unittest
from types import SimpleNamespace
import requests
import torch
from sglang.srt.utils import kill_process_tree
from sglang.test.few_shot_gsm8k import run_eval as run_eval_few_shot_gsm8k
from sglang.test.test_utils import (
DEFAULT_MODEL_NAME_FOR_TEST_MLA,
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
CustomTestCase,
is_in_ci,
popen_launch_server,
run_bench_one_batch,
)
class TestFlashMLAAttnBackend(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model = DEFAULT_MODEL_NAME_FOR_TEST_MLA
cls.base_url = DEFAULT_URL_FOR_TEST
other_args = ["--trust-remote-code"]
if torch.cuda.is_available() and torch.version.cuda:
other_args.extend(
[
"--enable-torch-compile",
"--cuda-graph-max-bs",
"2",
"--attention-backend",
"flashmla",
]
)
cls.process = popen_launch_server(
cls.model,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=other_args,
)
@classmethod
def tearDownClass(cls):
kill_process_tree(cls.process.pid)
def test_gsm8k(self):
args = SimpleNamespace(
num_shots=5,
data_path=None,
num_questions=200,
max_new_tokens=512,
parallel=128,
host="http://127.0.0.1",
port=int(self.base_url.split(":")[-1]),
)
metrics = run_eval_few_shot_gsm8k(args)
print(metrics)
self.assertGreater(metrics["accuracy"], 0.60)
class TestFlashMLAAttnLatency(unittest.TestCase):
def test_latency(self):
output_throughput = run_bench_one_batch(
DEFAULT_MODEL_NAME_FOR_TEST_MLA,
[
"--attention-backend",
"flashmla",
"--enable-torch-compile",
"--cuda-graph-max-bs",
"16",
"--trust-remote-code",
],
)
if is_in_ci():
self.assertGreater(output_throughput, 100)
class TestFlashMLAMTP(CustomTestCase):
@classmethod
def setUpClass(cls):
cls.model = "lmsys/sglang-ci-dsv3-test"
cls.base_url = DEFAULT_URL_FOR_TEST
other_args = ["--trust-remote-code"]
if torch.cuda.is_available() and torch.version.cuda:
other_args.extend(
[
"--cuda-graph-max-bs",
"4",
"--disable-radix",
"--enable-torch-compile",
"--torch-compile-max-bs",
"1",
"--speculative-algorithm",
"EAGLE",
"--speculative-draft",
"lmsys/sglang-ci-dsv3-test-NextN",
"--speculative-num-steps",
"1",
"--speculative-eagle-topk",
"1",
"--speculative-num-draft-tokens",
"2",
"--attention-backend",
"flashmla",
]
)
cls.process = popen_launch_server(
cls.model,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=other_args,
)
@classmethod
def tearDownClass(cls):
kill_process_tree(cls.process.pid)
def test_gsm8k(self):
requests.get(self.base_url + "/flush_cache")
args = SimpleNamespace(
num_shots=5,
data_path=None,
num_questions=200,
max_new_tokens=512,
parallel=128,
host="http://127.0.0.1",
port=int(self.base_url.split(":")[-1]),
)
metrics = run_eval_few_shot_gsm8k(args)
print(metrics)
self.assertGreater(metrics["accuracy"], 0.60)
server_info = requests.get(self.base_url + "/get_server_info")
print(f"{server_info=}")
avg_spec_accept_length = server_info.json()["internal_states"][0][
"avg_spec_accept_length"
]
print(f"{avg_spec_accept_length=}")
self.assertGreater(avg_spec_accept_length, 1.8)
if __name__ == "__main__":
unittest.main()