125 lines
3.9 KiB
Python
125 lines
3.9 KiB
Python
import gc
|
|
import time
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
import sglang as sgl
|
|
from sglang.test.test_utils import DEFAULT_SMALL_MODEL_NAME_FOR_TEST, CustomTestCase
|
|
|
|
|
|
def test_update_weights_from_tensor(tp_size):
|
|
assert torch.cuda.device_count() >= tp_size, f"At least {tp_size} GPUs are required"
|
|
torch.cuda.empty_cache()
|
|
|
|
engine = sgl.Engine(model_path=DEFAULT_SMALL_MODEL_NAME_FOR_TEST, tp_size=tp_size)
|
|
|
|
param_names = [f"model.layers.{i}.mlp.up_proj.weight" for i in range(6, 16)]
|
|
|
|
_check_param(engine, param_names[0], [0.0087, -0.0214, -0.0004, 0.0039, 0.0110])
|
|
|
|
memory_before = torch.cuda.memory_allocated()
|
|
new_tensor = torch.full((16384, 2048), 1.5, device="cuda")
|
|
|
|
time_start = time.perf_counter()
|
|
engine.update_weights_from_tensor([(x, new_tensor) for x in param_names])
|
|
print(f"Time delta: {time.perf_counter() - time_start:.03f}")
|
|
|
|
for param_name in param_names[:3]:
|
|
_check_param(engine, param_name, [1.5] * 5)
|
|
|
|
engine.shutdown()
|
|
|
|
del new_tensor
|
|
gc.collect()
|
|
torch.cuda.ipc_collect()
|
|
torch.cuda.empty_cache()
|
|
memory_after = torch.cuda.memory_allocated()
|
|
assert (
|
|
memory_after <= memory_before + 1024
|
|
), f"Memory leak detected: {memory_after - memory_before} bytes"
|
|
|
|
|
|
class TestUpdateWeightsFromTensor(CustomTestCase):
|
|
def test_update_weights_from_tensor(self):
|
|
tp_sizes = [1, 2]
|
|
for tp_size in tp_sizes:
|
|
if torch.cuda.device_count() < tp_size:
|
|
continue
|
|
|
|
with self.subTest(tp_size=tp_size):
|
|
test_update_weights_from_tensor(tp_size)
|
|
|
|
def test_update_weights_from_tensor_load_format_direct(self):
|
|
engine = sgl.Engine(model_path=DEFAULT_SMALL_MODEL_NAME_FOR_TEST)
|
|
|
|
write_param_names = [
|
|
f"model.layers.{i}.self_attn.qkv_proj.weight" for i in range(6, 16)
|
|
]
|
|
read_param_names = [
|
|
f"model.layers.{i}.self_attn.k_proj.weight" for i in range(6, 16)
|
|
]
|
|
|
|
_check_param(
|
|
engine, read_param_names[0], [-0.0198, 0.0227, 0.0168, 0.0232, -0.0178]
|
|
)
|
|
|
|
new_tensor = torch.full((3072, 2048), 1.5)
|
|
engine.update_weights_from_tensor(
|
|
[
|
|
(write_param_name, new_tensor.clone())
|
|
for write_param_name in write_param_names
|
|
],
|
|
load_format="direct",
|
|
)
|
|
|
|
for read_param_name in read_param_names[:3]:
|
|
_check_param(engine, read_param_name, [1.5] * 5)
|
|
|
|
engine.shutdown()
|
|
|
|
def test_update_weights_from_tensor_load_format_custom(self):
|
|
custom_loader_name = (
|
|
"sglang.srt.model_executor.model_runner._model_load_weights_direct"
|
|
)
|
|
engine = sgl.Engine(
|
|
model_path=DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
|
|
custom_weight_loader=[custom_loader_name],
|
|
)
|
|
|
|
write_param_names = [
|
|
f"model.layers.{i}.self_attn.qkv_proj.weight" for i in range(6, 16)
|
|
]
|
|
read_param_names = [
|
|
f"model.layers.{i}.self_attn.k_proj.weight" for i in range(6, 16)
|
|
]
|
|
|
|
_check_param(
|
|
engine, read_param_names[0], [-0.0198, 0.0227, 0.0168, 0.0232, -0.0178]
|
|
)
|
|
|
|
new_tensor = torch.full((3072, 2048), 1.5)
|
|
engine.update_weights_from_tensor(
|
|
[
|
|
(write_param_name, new_tensor.clone())
|
|
for write_param_name in write_param_names
|
|
],
|
|
load_format=custom_loader_name,
|
|
)
|
|
|
|
for read_param_name in read_param_names[:3]:
|
|
_check_param(engine, read_param_name, [1.5] * 5)
|
|
|
|
engine.shutdown()
|
|
|
|
|
|
def _check_param(engine, param_name, expect_values):
|
|
actual_values = torch.tensor(engine.get_weights_by_name(param_name))[0, :5]
|
|
assert torch.allclose(
|
|
actual_values, torch.tensor(expect_values), atol=0.002
|
|
), f"{actual_values=}"
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|