import argparse import json import os import time import numpy as np import pandas as pd import tiktoken from sglang.test.test_utils import ( add_common_sglang_args_and_parse, select_sglang_backend, ) choices = ["A", "B", "C", "D"] tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo") def format_subject(subject): l = subject.split("_") s = "" for entry in l: s += " " + entry return s def format_example(df, idx, include_answer=True): prompt = df.iloc[idx, 0] k = df.shape[1] - 2 for j in range(k): prompt += "\n{}. {}".format(choices[j], df.iloc[idx, j + 1]) prompt += "\nAnswer:" if include_answer: prompt += " {}\n\n".format(df.iloc[idx, k + 1]) return prompt def gen_prompt(train_df, subject, k=-1): prompt = "The following are multiple choice questions (with answers) about{}.\n\n".format( format_subject(subject) ) if k == -1: k = train_df.shape[0] for i in range(k): prompt += format_example(train_df, i) return prompt def main(args): subjects = sorted( [ f.split("_test.csv")[0] for f in os.listdir(os.path.join(args.data_dir, "test")) if "_test.csv" in f ] ) # Build prompts arguments = [] labels = [] num_questions = [] for subject in subjects[: args.nsub]: dev_df = pd.read_csv( os.path.join(args.data_dir, "dev", subject + "_dev.csv"), header=None )[: args.ntrain] test_df = pd.read_csv( os.path.join(args.data_dir, "test", subject + "_test.csv"), header=None ) num_questions.append(test_df.shape[0]) k = args.ntrain few_shot_examples = gen_prompt(dev_df, subject, k) while len(tokenizer.encode(few_shot_examples)) > 1536: k -= 1 few_shot_examples = gen_prompt(dev_df, subject, k) for i in range(test_df.shape[0]): prompt_end = format_example(test_df, i, include_answer=False) arguments.append( { "examples": few_shot_examples, "question": prompt_end, } ) label = test_df.iloc[i, test_df.shape[1] - 1] labels.append(label) ##################################### ######### SGL Program Begin ######### ##################################### import sglang as sgl if args.backend.startswith("gpt-"): @sgl.function def few_shot_mmlu(s, examples, question): s += sgl.user(examples + question) s += sgl.assistant(sgl.gen("answer")) else: @sgl.function def few_shot_mmlu(s, examples, question): s += examples + question + sgl.gen("answer") ##################################### ########## SGL Program End ########## ##################################### # Select backend backend = select_sglang_backend(args) # Run tic = time.time() states = few_shot_mmlu.run_batch( arguments, temperature=0, max_new_tokens=1, backend=backend, num_threads=args.parallel, progress_bar=True, ) preds = [ s["answer"].strip()[0] if len(s["answer"].strip()) > 0 else "" for s in states ] latency = time.time() - tic # Compute accuracy cors = [pred == label for pred, label in zip(preds, labels)] pt = 0 for subject, num_qs in zip(subjects[: args.nsub], num_questions): print( f"subject: {subject}, #q:{num_qs}, acc: {np.mean(cors[pt: pt + num_qs]):.3f}" ) pt += num_qs assert pt == len(cors) weighted_acc = np.mean(cors) # Print results print("Total latency: {:.3f}".format(latency)) print("Average accuracy: {:.3f}".format(weighted_acc)) # Write results with open(args.result_file, "a") as fout: value = { "task": "mmlu", "backend": args.backend, "num_gpus": 1, "latency": round(latency, 3), "accuracy": round(weighted_acc, 3), "num_requests": len(arguments), "other": { "nsub": args.nsub, "parallel": args.parallel, }, } fout.write(json.dumps(value) + "\n") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--ntrain", "-k", type=int, default=5) parser.add_argument("--data_dir", "-d", type=str, default="data") parser.add_argument("--save_dir", "-s", type=str, default="results") parser.add_argument("--nsub", type=int, default=60) args = add_common_sglang_args_and_parse(parser) main(args)