from abc import ABC, abstractmethod from dataclasses import dataclass from typing import Any, Dict, List, Optional import numpy as np @dataclass class ChoicesDecision: decision: str meta_info: Optional[Dict[str, Any]] = None class ChoicesSamplingMethod(ABC): @property def requires_unconditional_logprobs(self) -> bool: return False @abstractmethod def __call__( self, *, choices: List[str], normalized_prompt_logprobs: List[float], input_token_logprobs: List[List[Any]], output_token_logprobs: List[List[Any]], unconditional_token_logprobs: Optional[List[List[Any]]] = None, ) -> ChoicesDecision: ... class TokenLengthNormalized(ChoicesSamplingMethod): def __call__( self, *, choices: List[str], normalized_prompt_logprobs: List[float], input_token_logprobs: List[List[Any]], output_token_logprobs: List[List[Any]], unconditional_token_logprobs: Optional[List[List[Any]]] = None, ) -> ChoicesDecision: """Select the option with the highest token length normalized prompt logprob.""" best_choice = choices[np.argmax(normalized_prompt_logprobs)] meta_info = { "normalized_prompt_logprobs": normalized_prompt_logprobs, "input_token_logprobs": input_token_logprobs, "output_token_logprobs": output_token_logprobs, } return ChoicesDecision(decision=best_choice, meta_info=meta_info) token_length_normalized = TokenLengthNormalized() class GreedyTokenSelection(ChoicesSamplingMethod): def __call__( self, *, choices: List[str], normalized_prompt_logprobs: List[float], input_token_logprobs: List[List[Any]], output_token_logprobs: List[List[Any]], unconditional_token_logprobs: Optional[List[List[Any]]] = None, ) -> ChoicesDecision: """Select the option based on greedy logprob selection. For overlapping options where one option is a subset of a longer option, extend the shorter option using its average logprob for comparison against the longer option.""" num_options = len(choices) max_tokens = max(len(option) for option in input_token_logprobs) logprob_matrix = self._build_logprob_matrix( input_token_logprobs, max_tokens, num_options ) remaining = self._greedy_selection(logprob_matrix, num_options, max_tokens) best_choice = choices[remaining[0]] meta_info = { "normalized_prompt_logprobs": normalized_prompt_logprobs, "input_token_logprobs": input_token_logprobs, "output_token_logprobs": output_token_logprobs, "greedy_logprob_matrix": logprob_matrix.tolist(), } return ChoicesDecision(decision=best_choice, meta_info=meta_info) def _build_logprob_matrix(self, input_token_logprobs, max_tokens, num_options): logprob_matrix = np.zeros((num_options, max_tokens)) for i, option in enumerate(input_token_logprobs): actual_logprobs = [token[0] for token in option] avg_logprob = np.mean(actual_logprobs) logprob_matrix[i, : len(option)] = actual_logprobs if len(option) < max_tokens: logprob_matrix[i, len(option) :] = avg_logprob return logprob_matrix def _greedy_selection(self, logprob_matrix, num_options, max_tokens): remaining = np.arange(num_options) for j in range(max_tokens): max_logprob = np.max(logprob_matrix[remaining, j]) remaining = remaining[logprob_matrix[remaining, j] == max_logprob] if len(remaining) == 1: break return remaining greedy_token_selection = GreedyTokenSelection() class UnconditionalLikelihoodNormalized(ChoicesSamplingMethod): @property def requires_unconditional_logprobs(self) -> bool: return True def __call__( self, *, choices: List[str], normalized_prompt_logprobs: List[float], input_token_logprobs: List[List[Any]], output_token_logprobs: List[List[Any]], unconditional_token_logprobs: Optional[List[List[Any]]] = None, ) -> ChoicesDecision: """Select the option with the highest average token logprob once normalized by the unconditional token logprobs. The first unconditional token logprob is assumed to be None. If so, it is replaced with 0 for the purposes of normalization.""" if unconditional_token_logprobs is None: raise ValueError( "Unconditional token logprobs are required for this method." ) normalized_unconditional_prompt_logprobs = self._normalize_logprobs( input_token_logprobs, unconditional_token_logprobs ) best_choice = choices[np.argmax(normalized_unconditional_prompt_logprobs)] meta_info = { "normalized_prompt_logprobs": normalized_prompt_logprobs, "input_token_logprobs": input_token_logprobs, "output_token_logprobs": output_token_logprobs, "unconditional_token_logprobs": unconditional_token_logprobs, "normalized_unconditional_prompt_logprobs": normalized_unconditional_prompt_logprobs, } return ChoicesDecision(decision=best_choice, meta_info=meta_info) def _normalize_logprobs(self, input_token_logprobs, unconditional_token_logprobs): normalized_unconditional_prompt_logprobs = [] for inputs, unconditionals in zip( input_token_logprobs, unconditional_token_logprobs ): inputs_logprobs = np.array([token[0] for token in inputs]) unconditionals_logprobs = np.array([token[0] for token in unconditionals]) unconditionals_logprobs[0] = unconditionals_logprobs[0] or 0 normalized_unconditional_prompt_logprobs.append( float(np.mean(inputs_logprobs - unconditionals_logprobs)) ) return normalized_unconditional_prompt_logprobs unconditional_likelihood_normalized = UnconditionalLikelihoodNormalized()