# Adapted from https://github.com/vllm-project/vllm/blob/v0.6.4.post1/vllm/_custom_ops.py import logging import os from typing import List, Tuple import torch import torch.library from sglang.srt.utils import get_bool_env_var, is_hip, is_hpu logger = logging.getLogger(__name__) use_vllm_custom_allreduce = get_bool_env_var( "USE_VLLM_CUSTOM_ALLREDUCE", default="false" ) if not is_hpu(): # ROCm does not use vllm custom allreduce if use_vllm_custom_allreduce and not is_hip(): try: import vllm._C except ImportError as e: logger.warning("Failed to import from vllm._C with %r", e) else: try: import sgl_kernel except ImportError as e: logger.warning("Failed to import from custom_ar with %r", e) if use_vllm_custom_allreduce and not is_hip(): # vLLM custom allreduce def init_custom_ar( ipc_tensors: List[torch.Tensor], rank_data: torch.Tensor, rank: int, full_nvlink: bool, ) -> int: return torch.ops._C_custom_ar.init_custom_ar( ipc_tensors, rank_data, rank, full_nvlink ) def all_reduce( fa: int, inp: torch.Tensor, out: torch.Tensor, reg_buffer: int, reg_buffer_sz_bytes: int, ) -> None: torch.ops._C_custom_ar.all_reduce(fa, inp, out, reg_buffer, reg_buffer_sz_bytes) def dispose(fa: int) -> None: torch.ops._C_custom_ar.dispose(fa) def meta_size() -> int: return torch.ops._C_custom_ar.meta_size() def register_buffer(fa: int, ipc_tensors: List[int]) -> None: return torch.ops._C_custom_ar.register_buffer(fa, ipc_tensors) def get_graph_buffer_ipc_meta(fa: int) -> Tuple[List[int], List[int]]: return torch.ops._C_custom_ar.get_graph_buffer_ipc_meta(fa) def register_graph_buffers( fa: int, handles: List[List[int]], offsets: List[List[int]] ) -> None: torch.ops._C_custom_ar.register_graph_buffers(fa, handles, offsets) else: if is_hip(): # ROCM custom allreduce def init_custom_ar( meta: torch.Tensor, rank_data: torch.Tensor, handles: List[str], offsets: List[int], rank: int, full_nvlink: bool, ) -> int: return sgl_kernel.allreduce.init_custom_ar( meta, rank_data, handles, offsets, rank, full_nvlink ) def all_reduce_reg(fa: int, inp: torch.Tensor, out: torch.Tensor) -> None: sgl_kernel.allreduce.all_reduce_reg(fa, inp, out) def all_reduce_unreg( fa: int, inp: torch.Tensor, reg_buffer: torch.Tensor, out: torch.Tensor ) -> None: sgl_kernel.allreduce.all_reduce_unreg(fa, inp, reg_buffer, out) def dispose(fa: int) -> None: sgl_kernel.allreduce.dispose(fa) def meta_size() -> int: return sgl_kernel.allreduce.meta_size() def register_buffer( fa: int, t: torch.Tensor, handles: List[str], offsets: List[int] ) -> None: return sgl_kernel.allreduce.register_buffer(fa, t, handles, offsets) def get_graph_buffer_ipc_meta(fa: int) -> Tuple[torch.Tensor, List[int]]: return sgl_kernel.allreduce.get_graph_buffer_ipc_meta(fa) def register_graph_buffers( fa: int, handles: List[str], offsets: List[List[int]] ) -> None: sgl_kernel.allreduce.register_graph_buffers(fa, handles, offsets) def allocate_meta_buffer(size: int) -> torch.Tensor: return sgl_kernel.allreduce.allocate_meta_buffer(size) def get_meta_buffer_ipc_handle(inp: torch.Tensor) -> torch.Tensor: return sgl_kernel.allreduce.get_meta_buffer_ipc_handle(inp) else: # TRTLLM custom allreduce def init_custom_ar( rank_id: int, world_size: int, rank_data_base: torch.Tensor, buffers: List[int], tmp_result_buffers: List[int], barrier_in: List[int], barrier_out: List[int], ) -> int: return sgl_kernel.init_custom_reduce( rank_id, world_size, rank_data_base, buffers, tmp_result_buffers, barrier_in, barrier_out, ) def all_reduce(fa: int, inp: torch.Tensor, out: torch.Tensor) -> None: sgl_kernel.custom_reduce(fa, inp, out) def dispose(fa: int) -> None: sgl_kernel.custom_dispose(fa) def get_graph_buffer_ipc_meta(fa: int) -> Tuple[List[int], List[int]]: return sgl_kernel.get_graph_buffer_ipc_meta(fa) def register_graph_buffers( fa: int, handles: List[List[int]], offsets: List[List[int]] ) -> None: sgl_kernel.register_graph_buffers(fa, handles, offsets)