# Copyright 2023-2024 SGLang Team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Constrained decoding with llguidance backend.""" import json import os from typing import List, Optional, Tuple import llguidance import llguidance.hf import llguidance.torch import torch from llguidance.gbnf_to_lark import any_to_lark from sglang.srt.constrained.base_grammar_backend import ( BaseGrammarBackend, BaseGrammarObject, ) class GuidanceGrammar(BaseGrammarObject): def __init__( self, llguidance_tokenizer: llguidance.LLTokenizer, serialized_grammar: str ): self.llguidance_tokenizer = llguidance_tokenizer self.serialized_grammar = serialized_grammar # TODO: add support for fast-forward tokens in the future self.ll_interpreter = llguidance.LLInterpreter( self.llguidance_tokenizer, self.serialized_grammar, enable_backtrack=False, enable_ff_tokens=False, log_level=int(os.environ.get("LLGUIDANCE_LOG_LEVEL", "1")), ) self.pending_ff_tokens: list[int] = [] self.finished = False self.bitmask = None def try_jump_forward(self, tokenizer) -> Optional[Tuple[List[int], str]]: if len(self.pending_ff_tokens) > 0: s = self.llguidance_tokenizer.decode_str(self.pending_ff_tokens) ff_tokens = self.pending_ff_tokens self.pending_ff_tokens = [] return (ff_tokens, s) return None def jump_forward_str_state(self, helper: Tuple[List[int], str]) -> Tuple[str, int]: return "", -1 def jump_and_retokenize( self, old_output_ids: List[int], new_output_ids: List[int], next_state: int ): pass def accept_token(self, token: int): backtrack, ff_tokens = self.ll_interpreter.commit_token(token) if len(ff_tokens) > 0 and backtrack == 0: # first token is last generated token ff_tokens = ff_tokens[1:] self.pending_ff_tokens.extend(ff_tokens) def fill_vocab_mask(self, vocab_mask: torch.Tensor, idx: int) -> None: if len(self.pending_ff_tokens) > 0: # if we have pending fast-forward tokens, # just return them immediately ff_token = self.pending_ff_tokens.pop(0) vocab_mask[idx, :] = 0 vocab_mask[idx, ff_token // 32] = 1 << (ff_token % 32) return if self.ll_interpreter.has_pending_stop(): self.finished = True llguidance.torch.fill_next_token_bitmask(self.ll_interpreter, vocab_mask, idx) def allocate_vocab_mask( self, vocab_size: int, batch_size: int, device ) -> torch.Tensor: if self.bitmask is None or self.bitmask.shape[0] < batch_size: # only create bitmask when batch gets larger self.bitmask = llguidance.torch.allocate_token_bitmask( batch_size, self.llguidance_tokenizer.vocab_size ) bitmask = self.bitmask else: bitmask = self.bitmask[:batch_size] return bitmask @staticmethod def move_vocab_mask(vocab_mask: torch.Tensor, device) -> torch.Tensor: return vocab_mask.to(device, non_blocking=True) @staticmethod def apply_vocab_mask(logits: torch.Tensor, vocab_mask: torch.Tensor) -> None: llguidance.torch.apply_token_bitmask_inplace(logits, vocab_mask) def copy(self): return GuidanceGrammar( llguidance_tokenizer=self.llguidance_tokenizer, serialized_grammar=self.serialized_grammar, ) class GuidanceBackend(BaseGrammarBackend): def __init__(self, tokenizer, whitespace_pattern: Optional[str] = None): super().__init__() self.tokenizer = tokenizer self.whitespace_flexible = ( True if whitespace_pattern == "whitespace_flexible" else False ) self.llguidance_tokenizer = llguidance.hf.from_tokenizer(self.tokenizer, None) def _from_serialized(self, serialized_grammar) -> GuidanceGrammar: return GuidanceGrammar( llguidance_tokenizer=self.llguidance_tokenizer, serialized_grammar=serialized_grammar, ) def dispatch_json(self, key_string: str) -> GuidanceGrammar: json_schema = key_string compiler = llguidance.JsonCompiler(whitespace_flexible=self.whitespace_flexible) serialized_grammar = compiler.compile(json_schema) return self._from_serialized(serialized_grammar) def dispatch_regex(self, key_string: str) -> GuidanceGrammar: compiler = llguidance.RegexCompiler() serialized_grammar = compiler.compile(regex=key_string) return self._from_serialized(serialized_grammar) def dispatch_ebnf(self, key_string: str) -> GuidanceGrammar: compiler = llguidance.LarkCompiler() serialized_grammar = compiler.compile(any_to_lark(key_string)) return self._from_serialized(serialized_grammar) def dispatch_structural_tag(self, key_string: str): return super().dispatch_structural_tag(key_string)